Обозначим через Н группу, порожденную f и g. Первый возможный случай таков: один из двух элементов можно получить, возведя другой в определенную степень. В этом случае включать такой элемент в число порождающих элементов группы Н не требуется: его можно получить из другого элемента. Таким образом, имеем подгруппу, порожденную единственным элементом, то есть циклическую группу.
Предположим, что это не так, то есть f и g не зависят друг от друга. По определению, элементами Н будут все возможные цепочки операций над f и g, к примеру:
f * g * g * f * g
Порядок следования элементов будет произвольным, но так как мы предположили, что композиция f и g коммутативна, мы можем воспользоваться свойством ассоциативности, применить равенство f*g = g*f и попарно объединить элементы так, что все f и все g будут расположены рядом. Пример:
f*g*g*f*g=f*g*(g*f)*g=f*g*(f*g)*g=f*(g*f)*g*g=f*(f*g)*g*g=f2*g3
Так как этот метод корректен для любого элемента H, мы доказали, что любой элемент Н можно записать в виде fn * gm, где n и m — неотрицательные целые натуральные числа (они могут равняться нулю). Как правило, из соображений удобства указывают, что и fn, и gm — нейтральные элементы. Таким образом, когда верхний индекс одного члена обнуляется, результат операции равен степени другого члена.
Вместо fn * gm мы могли бы записать (fn, gm), при этом в структуре Н не произошло бы каких-то существенных изменений. Эта операция очень похожа на произведение двух циклических групп, однако члены fn * gm могут повторяться, даже если
72
порядок f и g будет больше, чем n и m соответственно. Чтобы показать, что Н — это произведение двух циклических групп[6], нужно выполнить еще несколько действий:
Предложение 1. Конечная абелева группа, порожденная двумя элементами, является либо циклической, либо прямым произведением двух циклических групп.
Это предложение — частный случай теоремы о структуре конечнопорожденных абелевых групп, по которой такие группы изоморфны прямому произведению
ℤ× ... ×ℤ×ℤ/n1× ... ×ℤ/nk
где ℤ — группа целых чисел, a ℤ/n1 ..., ℤ/nk — циклические группы. Число копий ℤ, приведенных в произведении, называется рангом группы и отлично от нуля тогда и только тогда, когда группа является бесконечной.
ЛЕВИ-СТРОСС: Теперь рассмотрим наш пример. В нотации, которую вы объяснили в прошлый раз, перестановки f и g записываются так:
Переставим их двумя возможными способами:
Как видите, их композиция коммутативна, следовательно, в нашей структуре с обобщенным обменом любой мужчина может жениться на дочери брата своей матери.
ВЕЙЛЬ: Так как подгруппа S4, порожденная f и g, является абелевой, она будет либо циклической, либо прямым произведением двух циклических групп. В этом случае расчет
73
показывает, что перестановка f определяется как сочетание g с самой собой (/ =
= g2). Следовательно, мы имеем дело с первой из возможных ситуаций. Быть может, так будет всегда? Вовсе нет: составим пример, в котором подгруппа, порожденная f и g, будет прямым произведением двух циклических групп. Предположим, что допустимы следующие разновидности брака:
(Mt) мужчина А и женщина D
(M2) мужчина В и женщина С
(M3) мужчина С и женщина В
(M4) мужчина D и женщина А
В этом случае кланы А и D, равно как и В и С, обменялись женщинами, следовательно, мы имеем дело с ограниченным обменом. Предположим, что дети матерей из кланов А, В, С и D принадлежат к кланам В, A, D и С соответственно. Мы можем определить функции f и g прежним образом:
Обратите внимание, что f — та же перестановка, что и в предыдущем примере, а перестановка g изменилась. Но и в этом случае их композиция коммутативна: 11
Отличие от предыдущего примера заключается в том, что теперь и f, и g являются элементами второго порядка (убедитесь в этом), следовательно, ни один из них не может быть степенью другого. Следовательно, подгруппа, порожденная f и g, будет произведением двух циклических групп. Более того, это будет группа Клейна!
ЛЕВИ-СТРОСС: Еще один вопрос, который интересует нас, этнологов, при изучении браков, звучит так: можно ли найти группы людей, которые не связаны
74
отношениями родства между собой? Общество, в котором можно выделить такие группы, называется сократимым. Допустим, что в элементарном племени, состоящем из четырех кланов, ограниченный обмен проводится по следующим правилам:
(Mt) мужчина А и женщина В
(M2) мужчина В и женщина А
(M3) мужчина С и женщина D
(M4) мужчина D и женщина С
Дети принадлежат к тем же кланам, что и их матери. Функции f и g вычисляются как и обычно, однако будет не лишним напомнить, как именно это делается. В браке М1 жена принадлежит к клану В, следовательно, к этому же клану будут принадлежать и ее дети. Мужчина из клана В вступает в брак по правилу M2, поэтому f(M1) = M2 a g(M1) = M1 так как женщины из клана В подчиняются первому правилу. Получим таблицу
Очевидно, что кланы А и В никогда не породнятся с кланами С и D. Следовательно, рассматриваемое общество является сократимым. В противном случае общество называется несократимым.
ВЕЙЛЬ: Обратите внимание, господин Леви-Стросс, что достаточно рассмотреть несократимые общества, поскольку любое племя можно разделить на несколько несократимых сообществ. Это лишь одно из множества проявлений общего принципа, используемого в самых разных областях математики: если какой-либо объект можно разделить на несколько простых, при этом правила разделения известны, то для анализа всех возможных объектов достаточно изучить эти простые объекты. Представим несократимые общества на языке теории групп. Общество является несократимым тогда и только тогда, когда две любые разновидности брака связаны между собой перестановками f и g, то есть если одну из них можно получить из другой посредством этих перестановок. Не будем забывать, что f и g позволяют восстановить все генеалогическое древо! Очевидно, что это свойство в вашем примере не выполняется: применив f и g к М1 мы можем получить только М1 и М2
Тем не менее два первых общества являются несократимыми. Напомним таблицу, которую мы привели в самом начале:
75
Докажем, что на основе брака Мх можно получить все остальные. В самом деле, применив f и g, получим M3 и M2 соответственно. Если же мы применим сначала f, а затем g, то получим M4 в силу равенства g(f(M1)) = g(M3) = M4. Осталось показать, как можно получить М1. Один из возможных вариантов — дважды применить f, так как f2(M1) = f(M3) = М1. Вот и все! Следовательно, рассматриваемое общество является несократимым.
ЛЕВИ-СТРОСС: Постойте, разве не нужно доказать это же утверждение, взяв за основу M2, М3 и M4 вместо М1?
ВЕЙЛЬ: На самом деле этого не требуется, и сейчас я объясню, почему. Мы знаем, что из Мх можно вывести все возможные разновидности брака. Допустим, что мы хотим вывести все разновидности брака из какого-либо другого Mi. Обозначим через h элемент подгруппы, порожденной f и g, который позволяет перейти от М1 к Mi, то есть такой элемент, для которого выполняется условие h(M1) = Mi.
Так как h принадлежит группе, для него определен обратный элемент h-1. Припишем h-1 с двух сторон равенства и получим h-1(h(M1)) = h-1(Mi). Композицией h и h-1 является тождественное преобразование — вспомните определение обратного элемента! Таким образом, Мх = h-1(Mi). Это означает, что мы можем получить М1 из Mi. Так как правило M1 связано со всеми остальными разновидностями брака, с ними будет связано и любое другое Mi. Подгруппы Sn, обладающие этим свойством, называются транзитивными. Имеем:
Племя, состоящее из n кланов, является несократимым тогда и только тогда, когда подгруппа Sn , порожденная перестановками f и g, является транзитивной.
Объединив это утверждение с предложением 1, получим, что для изучения несократимых обществ, удовлетворяющих трем нашим условиям, необходимо знать: а) какие циклические подгруппы Sn транзитивны и б) какие прямые произведения двух циклических подгрупп Sn транзитивны. Нетрудно видеть, что подгруппа Н
76
группы Sn может быть транзитивной только тогда, когда она содержит по меньшей мере n элементов. Допустим, что эта подгруппа содержит m элементов, где m < n.
Обозначим их через h1, h2... hm. С M1 будут связаны следующие разновидности брака: h1(M1), h2(M2) ... hm(Mm). В лучшем случае все они будут различны, однако этот перечень никогда не будет полным, так как он содержит m элементов, а m меньше n. Применив некоторые другие свойства симметрической группы, найти циклические транзитивные подгруппы Sn несложно, однако давайте остановимся на этом — иначе мы никогда не закончим наш разговор о браках!
Племя мурнгин
ЛЕВИ-СТРОСС: Хотя ваши объяснения по сути намного лучше тех, что преддожили первые антропологи, во всех рассмотренных нами примерах они смогли решить поставленную задачу явным перебором всех возможных сочетаний. Теория групп абсолютно необходима тогда, когда число кланов по-настоящему велико или же когда в правилах заключения браков экзогамия сочетается с эндогамией.
Я понял это, едва начав изучать племя аборигенов мурнгин, живущих на севере Австралии, в Арнем-Ленде. Незадолго до того как я начал работу над докторской, один из крупнейших специалистов по австралийским аборигенам Адольфус Петер Элкин указал, что исключительно формальный анализ систем родства у аборигенов не имеет смысла, поскольку никак не помогает узнать обычаи племени.
Но четко изучить структуры родства у аборигенов мурнгин было крайне важно, так как это племя представляло собой одну из немногих систем ограниченного обмена, в которых различались браки между двоюродными братьями и сестрами: брак с дочерью брата матери разрешался, а брак с дочерью сестры отца — нет. Так как ни одна из известных в то время систем не позволяла объяснить это различие, некоторые авторы выбрали более простое решение — они попросту отказались от анализа закономерностей. Но как может столь точное правило, в котором различаются двоюродные братья и сестры и которое является логичным следствием определенной исходной конфигурации, появиться в системе, не подчиняющейся никаким нормам?
Племя мурнгин делится на два сообщества, иритча и дуа, а каждое из них состоит из четырех кланов. Эти кланы называются нгарит, булаин, каийярк, бангарди, бураланг, баланг, кармарунг и вармут. Названия кланов не имеют особого значения — будем обозначать кланы A1, A2, B1, B2, C1, C2, D1 и D2 Сразу же возникает аномалия, характерная для всех племен этого региона: мужчины не всегда обязаны искать себе жену в другом клане. Существуют две альтернативные формулы, (I)
77
и (II). Первая описывает браки внутри одной и той же половины племени, вторая — в разных. Эти формулы представлены на иллюстрации:
Неизменным остается правило, по которому мать определяет клан своих детей.
Это правило выглядит следующим образом:
ВЕЙЛЬ: Чтобы это общество удовлетворяло нашим условиям, необходимо предположить, что формула, применимая к конкретному человеку, зависит только от его пола и от разновидности брака его родителей, (I) или (II). Для каждого клана определены две разновидности брака, следовательно, имеем 16 различных правил.
Вместо того чтобы обозначить их через М1, M2 ... М16, введем не совсем обычные обозначения, которые помогут упростить расчеты. Во-первых, поставим в соответствие каждому клану племени тройку из нулей и единиц (а, b, с), где
а = 0 для клана А или В, а = 1 для клана С или D,
b = 0 для клана А или С, b = 1 для клана В или D,
с = 0 если номер группы равен 1, и с = 1, если номер группы равен 2.
К примеру, человек из группы А1 будет обозначаться тройкой (0, 0, 0), другой человек из группы В2 — тройкой (0, 1, 1). Верно и обратное: для любой тройки единиц и нулей, к примеру (1, 0, 0), соответствующий клан определяется единственным образом. Так как первое число тройки равно 1, ей соответствует клан С или D. Так как второе число тройки равно 0, ей соответствует клан А или С. Оба этих условия выполняются только в одном случае — если человек принадлежит к клану С. Так как последнее число в тройке равно 0, рассматриваемый человек — член группы С1
78
ЛЕВИ-СТРОСС: Теперь следует обозначить разновидности браков.
ВЕЙЛЬ: Действительно. Мы обозначили каждый клан тройкой чисел (а, b, с).
Добавим к ней четвертую координату, чтобы уточнить формулу брака. Так, каждое правило Mi будет обозначаться четырьмя числами (a, f>, с, d), которые могут равняться 1 или 0. Первые три числа (а, b, с) указывают клан, к которому принадлежит мужчина, вступающий в брак, а четвертое число равно 0 или 1 в зависимости от того, по какой формуле заключается брак — (I) или (II). К примеру, в браке (1, 0, 0, 1) мужчина клана (1, 0, 0), то есть С1 вступает в брак по формуле (II). Следовательно, его женой будет женщина из клана D2, то есть (1,1,1). Клан детей также определяется однозначно: в этом примере они будут принадлежать к клану В2, то есть (0, 1,1). Имеем:
Разновидности брака (1,0,0,1)
Клан отцов (1,0,0)
Клан матери (1,1,1)
Клан детей (0,1,1)
Основная причина, по которой мы выбрали эти обозначения из единиц и нулей, заключается в том, что теперь мы можем выразить отношения родства с помощью циклической группы ℤ/2. Чтобы обеспечить максимальную точность, все нули и единицы следовало бы записать в квадратных скобках, но не будем усложнять обозначения. Благодаря выбранной нотации предыдущий пример можно обобщить, применив две леммы, приведенные ниже.
Лемма 1. В браке разновидности (a, b, с, d) жена принадлежит к клану (а, b + 1, c + d)
В самом деле, мужчины, вступающие в брак по правилу (a,b, с, d), принадлежат к клану (a, b, с). Заметим, что вне зависимости от формулы брака представители кланов А и В всегда будут жениться между собой, равно как и представители кланов С и D.
Так как а = 0 для клана А или В, а = 1 для клана С или D, то первое число в обозначении женщины и мужчины будет одинаковым. Посмотрим, что произойдет со вторым числом. Для этого вновь отметим, что вне зависимости от формулы брака мужчины из кланов А и С будут жениться на женщинах из кланов В и D. Следовательно, если b = 0, то второе число в обозначении женщины будет равно 1.
79
Аналогично, мужчины из кланов В и D вступают в брак с женщинами из кланов А и С. Следовательно, если b = 1, то второе число в обозначении женщины будет равно 0. В обоих случаях b заменяется на b + 1, так как 0 + 1 = 1 и 1 + 1 = 0на ℤ/2.
Осталось посмотреть, как изменится третья координата, обозначающая подгруппу клана. Это единственное число, зависящее от формул (I) и (II). В первом случае, то есть при d = 0, все мужчины вступают в брак с женщинами из своей же подгруппы, следовательно, третье число не изменится. Тем не менее, согласно формуле (II), то есть при d = 1, подгруппы меняются, однако это равносильно сложению d с последней координатой. Лемма доказана! Путем аналогичных рассуждений можно определить клан детей в зависимости от клана матери. Докажем:
Лемма 2. Дети женщины клана (х, у, z) принадлежат клану (х + 1, у, х + z + 1).
Теперь, когда мы знаем, как клан женщины определяет разновидность ее брака и как разновидность брака передается от матери к детям, мы можем объединить эти результаты и описать зависимость клана потомков от разновидности брака родителей. Допустим, что дан брак (а, b, с, d). По первой лемме жена принадлежит к клану (а, b + 1, с + d).
Если теперь подставим во вторую лемму х = а, у = b + 1, z = c + d,
то получим, что дети будут принадлежать к клану (а + 1, b + 1, а + с + d + 1).
Имеем:
Лемма 3. Дети от брака разновидности (а, b, с, d) принадлежат к клану (а + 1, b + 1, а + с + d + 1).
ЛЕВИ-СТРОСС: Следовательно, для определения функций f и g нам не хватает одного — правила, описывающего, как выбор формулы (I) или (II) передается по наследству от родителей к детям. Результаты практических исследований показывают, что возможны четыре ситуации:
(1) Дети следуют той же формуле, что и родители.
(2) Дети следуют обратной формуле.
80
(3) Сыновья следуют той же формуле, дочери — обратной.
(4) Дочери следуют той же формуле, сыновья — обратной.
ВЕЙЛЬ: Обозначим каждый из этих случаев двумя индексами (р, q). Если сыновья придерживаются той же формулы, что и родители, то р = 0, в противном случае р = 1; аналогично определяется q для дочерей. Таким образом, четыре упомянутых вами варианта обозначаются (0, 0), (1,1), (0,1) и (1, 0). Обратите внимание, что если брак описывается формулой, которая обозначается координатой d, то сыновья будут следовать правилу d + р, дочери — d + q. Теперь мы можем описать функцию /. Начнем с брака (а, b, с, d). По лемме 3 дети от этого брака принадлежат к клану (а + 1, b + 1, а + с + d + 1). С учетом изложенных выше рассуждений, их формула брака будет равна d 4- р. Следовательно:
f(а, b, с, d) = (а+1, b+1, а + с + d + 1, d + р).
Чтобы определить g, нужно выполнить еще одно действие. Мы знаем, что дочери от брака (а, b, с, d) принадлежат клану (а + 1, b + 1, а + с + d + 1), однако первые три координаты в обозначении брака обозначают не их клан, а их будущего мужа. Следовательно, нужно определить, к какому клану принадлежат мужчины, которые женятся на женщинах из клана (а + 1,b + 1,а + с + d +1)по формуле d + q.
Для этого нам потребуется утверждение, дополняющее лемму 1. Напомню, как звучит эта лемма (сменим обозначения во избежание путаницы):
Лемма 1. В браке разновидности (х, у z, t) жена принадлежит к клану (х, у + 1, z + t).
Мы знаем, что t = d + q, а (х, у + 1, 2 + t) = (а + 1, b + 1, а + с + d + 1), так как к этому клану принадлежит жена. Приравняв координаты, получим систему уравнений:
х = а +1, y + 1 = b + 1, z + d + q = a + c + d + 1,
где мы заменили f на d + q. Первое равенство не требует преобразований, так как значение х известно. Надеюсь, господин Леви-Стросс, что вы не забыли закон сокращения, который я уже объяснял. Если мы применим его к двум последним уравнениям, получим
81
y = b, z + q = a + c + 1.
Мы определили значение у. Чтобы вычислить z, заметим, что в циклической группе ℤ/2 результатом сложения любого элемента с самим собой всегда будет 0, так как 0 + 0 = 1 + 1 = 0. Так, если мы прибавим q к обеим частям равенства, получим z = a + c + q + 1. Таким образом, если женщина из клана
(а + 1, b + 1, а + с + d + 1)
вступает в брак по формуле d + q, ее разновидность брака будет такова:
g(a, b, с, d) = (a+ 1, b, a+ c + q + 1, d + q).
ЛЕВИ-СТРОСС: Теперь я вспомнил, почему мне пришлось обратиться к вам за помощью, господин Вейль.
ВЕЙЛЬ: Следует признать, господин Леви-Стросс, что мне также потребовалось немало времени, чтобы провести эти рассуждения. Важно, что теперь, когда мы определили функции f и g, мы можем автоматически ответить на ваш вопрос о том, как формулы (I) и (II) должны передаваться от родителей к детям, чтобы в следующем поколении мужчина мог жениться на дочери брата своей матери. Мы определили, что это свойство эквивалентно коммутативности композиции f и g. Произведем вычисления. С одной стороны, имеем:
g(f(a, b, с, d))=g(a +1, b + 1, a + c + d + 1, d + p)
= ((a +1) +1, b +1, (a + 1) + (a + c + d + 1)+ q + 1,(d + p) + q)
= (a, b +1, c + d + q + 1, d + p + q),
так как мы можем упростить слагаемые, которые фигурируют дважды в каждой из координат. С другой стороны, применив аналогичные упрощения, получим
f(g(a, b, с, d))=f(a+1, b, a + c + q + 1, d + q)
= ((a +1) +1, b +1, (a +1) + (a + c + q +1) +(d+q)+ 1,(d+q) +p)
= (a, b +1, c + d +1, d + p + q),
Таким образом, должно выполняться следующее условие:
(а, b + 1, c + d + g +1, d + p + g) = (а, b + 1, с + d +1, d + р + q).
82
Так как первая, вторая и четвертая координаты совпадают, необходимо рассмотреть только третью. Согласно закону сокращения из равенства
c + d + g + 1 = c + d + 1
следует, что q = 0. Напомню: это означает, что формула брака дочерей должна быть той же, что и формула брака их родителей. Следовательно, искомое условие выполняется только в тех обществах, где формула брака передается по модели (1) или (4). Иными словами, либо дети обоих полов сохраняют формулу брака родителей, либо же формулу брака родителей сохраняют только дочери, а сыновья следуют обратной формуле. Рассмотрим два этих случая.
В первом случае рассматриваемое общество очевидно является сократимым: так как формулы брака детей и родителей совпадают, разновидности брака, можно сказать, передаются по наследству. Так, племя делится на две части: в первой браки заключаются по формуле (I), во второй — по формуле (II). Как показано в таблице, порядок элементов f и g равен 4, но их квадраты совпадают:
ЛЕВИ-СТРОСС: Это означает, что в этом племени мужчина может жениться на дочери сестры своей матери.
ВЕЙЛЬ: Равенство f² = g² также означает, что группа, порожденная f и g, содержит не 16 элементов, как можно было бы ожидать, а всего 8: е, f, f², f3, g, fg, f²g и f3g. Следовательно, рассматриваемое общество является сократимым. Между прочим, рассматриваемая группа изоморфна группе ℤ/2 х ℤ/4.
ЛЕВИ-СТРОСС: Рассмотрим оставшийся случай, когда дочери придерживаются той же формулы заключения брака, что и родители, сыновья — обратной, следовательно, р = 1, q = 0. Таким образом, функции f и g будут равны:
f(а, b, с, d) = (а+1, b+1, а + с + d+1, d +1), g (a, b, c, d) = (a+1, b, a+c +1, d );
Функция g будет той же, что и в предыдущем случае. Мы уже знаем, что она является функцией четвертого порядка. Вычислим порядок функции f. Для этого применим ее несколько раз, пока не получим тождественное преобразование. Если я не ошибаюсь, достаточно применить ее дважды:
83
f²(а, b, с, d) = f(а+1, b+1, а+с+d+1, d+1)
= ((а+1)+1, (b+1)+1,(a+1) + (a+c+d+1)+(d+1)+1,(d+1)+1)
= (а, b, с, d),
а также использовать упрощения, которые вы продемонстрировали выше.
Более того, f и g независимы, следовательно, порожденная ими группа изоморфна группе ℤ/2 х ℤ/4. Этого достаточно, чтобы доказать: рассматриваемое племя является несократимым, так как в группе ℤ/2 х ℤ/4 недостаточно элементов восьмого порядка для преобразования 16 разновидностей брака между собой.
ВЕЙЛЬ: Поздравляю вас, господин Леви-Стросс! Вы все поняли! В этом случае также можно показать, что общество является сократимым, применив новый, более прямой метод, который я вам сейчас объясню. Рассмотрим брак вида (а, b, с, d). Согласно нашим расчетам, сыновья от этого брака вступят в брак по правилу (a +1,b +1,a + c + cf +1,cf +1).
Важно заметить, что разность между первой и четвертой координатами равна:
(b+1)-(d+1)=b-d.
Точно такой же будет разность между первой и четвертой координатами в исходной разновидности брака! Математики говорят, что эта величина инвариантна относительно f. Более того, она также инвариантна относительно g, так как в этом случае вторая и четвертая координаты не меняются. Следовательно, композиция f и g позволяет получить только те правила, в которых значение b — d равно исходному. К примеру, начав с (1, 1, 1, 0), мы никогда не сможем получить (1, 0, 1, 0), так как в первом случае разность между второй и четвертой координатами равна 1, во втором — 0.
Это означает, что представители клана D2, которые вступают в брак по правилу (I), принадлежат к иной группе, чем представители клана С2, вступающие в брак по той же формуле. Выполнив некоторые действия, мы сможем определить эти две группы в явном виде:
Первая группа.
84
Вторая группа.
ЛЕВИ-СТРОСС: Любой сказал бы, что аборигены мурнгин знали теорию групп.
ВЕЙЛЬ: Когда система, которая на первый взгляд кажется невообразимо сложной, путем умелого выбора обозначений превращается в нечто столь простое, как абелева группа, я воспринимаю это как чудо. Я не осмелюсь сказать, что принцип, согласно которому любой мужчина может жениться на дочери брата своей матери, был введен, чтобы доставить удовольствие математикам (это было бы уже слишком), но следует признать, что я до сих пор испытываю особую привязанность к аборигенам мурнгин.
Видя подобные примеры, сложно не согласиться с сонетом Микеланджело, в котором он говорит, что мраморная глыба уже содержит в себе произведение искусства, и задача художника — отсечь все лишнее:
И высочайший гений не прибавит
Единой мысли к тем, что мрамор сам
Таит в избытке,— и лишь это нам
Рука, послушная рассудку, явит[7].
Математик, подобно великому скульптору, высекает свои творения из необычайно твердого и прочного материала. Несовершенства материала столь сильно влияют на конечный результат, что наделяют его некоторого рода объективностью.
85