И вот именно в период революции случай начинает играть важную роль. Здесь какой-нибудь малозначительный эпизод может оказать гигантский эффект на развитие всей системы в будущем.
Вспомним Россию в 1917 году. Февральская революция застала большевиков врасплох: они были плохо подготовлены к борьбе за власть. Цепочка незначительных и не связанных друг с другом событий в итоге привела к победе большевиков в октябре. И это определило путь всей страны на 74 года вперед.
Но и случай ограничен. Есть флуктуации – колебания, которые и задают коридор возможностей. То есть, в случае нашей истории, к власти мог прийти Ленин, мог утвердиться Керенский. Могли победить кадеты или, что весьма вероятно, меньшевики. В каком-то виде даже могла остаться монархия, как это было в Великобритании.
Но число вариантов все равно было ограничено. Не было варианта возврата Николая II. Или прихода к власти условной «кухарки».
Эти варианты, когда система вышла из равновесного состояния и идет выбор во время «революции», называются в науке точками бифуркации. И в сложных системах (общество, атмо-сфера и т. п.) незначительный случайный фактор способен сильно повлиять на дальнейшее развитие.
В физическом мире эти случайные закономерности (оксюморон, но наш мир вообще парадоксален!) существуют, что и доказал Джорджо Паризи. Причем происходит это везде – от атомов и до космоса.
Паризи разработал математические методы статистического прогнозирования для поведения таких систем. Да, решить точно некоторые уравнения нельзя, считает ученый. Да и не нужно! Важно научиться предсказывать вероятность на основе статистических закономерностей.
Например, в растворе ионов натрия и хлора распределение, какой отдельный ион натрия соединится с отдельным ионом хлора, происходит во многом случайно. Но конечный результат в макромасштабе предсказуем. Ведь мы точно знаем, сколько в итоге получится хлорида натрия.
Случайность в микромире заметить проще, чем в космосе.
Квантовая случайность возникает только тогда, когда происходит взаимодействие. Такие взаимодействия включают, например, спонтанные процессы, такие как распад мюона (отрицательно заряженная частица с большей, чем электрон, массой).
Мюон распадается на электрон и нейтрино в случайный период времени с периодом полураспада 1,56 микросекунды.
В космосе же все процессы выглядят полностью детерминированными, потому что большинство квантовых объектов здесь (например, атомы водорода) были изолированы в течение длительного времени (плотность-то низкая). И они уже после распада достигли стабильного состояния.
Будучи изолированными, они не взаимодействуют друг с другом. Другими словами, детерминизм процессов в космосе возникает в первую очередь потому, что в космосе – по меркам квантовой механики – почти ничего не происходит. Это же не ускоритель типа адронного коллайдера, где мы можем сталкивать огромное количество частиц на высоких скоростях.
Какой урок мы можем извлечь из этих знаний? Чтобы чего-то достигать в этой жизни, надо прилагать усилия в определенном направлении. А дальше должно повезти. В одной из точек бифуркации случай рано или поздно может сыграть на вашей стороне. Если не работать над собой, то вероятность нужного вам события будет близка к нулю. Но если вы трудитесь над собой, а желаемого эффекта нет – просто подождите очередной «революции», и случай точно представится!
Лучше всего эту мысль высказал римский император и по совместительству философ-стоик Марк Аврелий:
«Делай что должно. И будь что будет!»
Глава 19Стрела времени
В 1927 году британский физик Артур Эддингтон пришел к выводу, что рассеивание энергии говорит о стреле времени. То есть время движется в одну сторону – только вперед. Если соединить два предмета, горячий и холодный, их температура скоро станет одинаковой. Энергия рассеется. Но в обратную сторону этот эксперимент провести нельзя. Про такой процесс физики говорят «энтропия растет».
Мы понимаем, в какую сторону движется время, из-за принципа причинности. Он пришел из философии, но имеет ключевое значение для физики.
Человек помнит, какие события с ним происходили в прошлом. Но будущее остается загадкой. В физике считается, что «стрела времени» указывает в направлении увеличения энтропии во Вселенной. Или увеличения беспорядка.
На бытовом уровне мы это хорошо понимаем. Это так называемая психологическая стрела времени, мы знаем, куда она движется. Мы рождаемся, стареем и умираем. Железо ржавеет, здания ветшают, горячий чай остывает.
Замок, построенный из песка, со временем разносится ветром и водой. То есть из порядка переходит в состояние беспорядка. И не бывает такого, чтобы ветер и вода собрали замок из песка сами. И хотя с точки зрения физики в этом нет ничего невозможного, вероятность этого крайне мала.
Эйнштейн был ярым поклонником стрелы времени. Он очень опасался, что его уравнения можно решить так, что теоретически путешествия в прошлое станут возможны. Потому что это стало бы опровержением его теории.
Математик Курт Гедель предложил идею вращающейся Вселенной. И в ней уравнения Эйнштейна решаются таким образом, что возможны путешествия во времени, в том числе и в прошлое.
Но все-таки метрика Геделя – это больше искусственная, математическая игра ума, чем реальная возможность.
По какой-то, пока неизвестной, причине Вселенная находилась в состоянии низкой энтропии 13,8 миллиарда лет назад. Эта низкая энтропия привела к появлению стрелы времени, когда постепенно энтропия увеличивается.
Стивен Хокинг, вместе с Эйнштейном, был убежден, что время имеет направление и движется вперед. Хокинг предложил ряд интересных парадоксов.
Если бы можно было летать в прошлое, то мы бы увидели множество туристов из будущего. Они бы точно посещали важные исторические события, чтобы сделать селфи.
В 2009 году Хокинг даже провел один забавный эксперимент. Он организовал вечеринку, а через некоторое время разослал на нее приглашения. Вечеринку он провел в гордом одиночестве. А если бы путешествия во времени были возможны, приглашенные точно бы узнали и пришли, решил физик.
Конечно, в бытовом смысле эти факты не связаны. Люди вовсе не обязательно должны прийти на вечеринку, даже если получили приглашение.
Вопрос возможности путешествий в прошлое пока остается одним из нерешенных вопросов в физике. Есть эксперименты, которые ставят под сомнение понятие «стрела времени».
«Изобретение русских ученых из Физтеха отправляет частицы в прошлое», – такими заголовками пестрела западная пресса в 2019 году.
Тогда ученые из Лаборатории физики Московского физико-технического института (МФТИ) провели любопытный эксперимент. Исследовательская группа под руководством Гордея Лесовика проводила эксперименты со временем на квантовом компьютере. И создала своеобразную машину времени, которая смогла отправить микрочастицы в прошлое.
«Русские научились перемещать объекты размером меньше атома в направлении, противоположном стреле времени!» – написало издание Daily Mail по итогам этого открытия.
Ученые поставили эксперимент с электронами. Чтобы понять, как это работает, представьте бильярд, где шары разбросаны случайным образом из изначально собранного треугольника. Ученые повернули их вспять, собрав в красивый треугольник, в котором они были до случайного разброса.
То есть электроны вернулись назад не под действием каких-то сил, а просто пройдя путь во времени в обратном направлении.
В журнале Scientific Reports отметили, что русская машина времени – это простой квантовый компьютер, который состоит из так называемых электронных кубитов.
Кубиты – это главное отличие квантового компьютера от обычного. В обычном компьютере транзисторы программируются только по принципу 1 и 0 (есть ток – 1, нет тока – 0). Через комбинации этих цифр и запоминается вся информация. У кубита кроме 1 и 0 есть много позиций между.
Физики обычно приводят такую аналогию. Обычный компьютер функционирует по тому же принципу, что и выключатель, где только два состояния – «вкл.» и «выкл.». А квантовый – как ручка на плите. Есть «выкл.», есть максимальная мощность (1), а есть еще очень много состояний между ними.
Физики запустили «эволюцию», когда кубиты стали меняться случайным образом. После этого им удалось повернуть процесс вспять: кубиты прошли процесс во времени в обратном направлении и заняли изначальные позиции. С двумя кубитами система возвращалась в исходное состояние в 85 % случаев, с тремя – в 50 %.
Получается, частицы вернулись в прошлое – то самое исход-ное состояние, с которого все начиналось. «Для внешнего наблюдателя это выглядит так, будто время бежит вспять», – говорит Гордей Лесовик.
Пока вопрос о путешествиях в прошлое остается открытым. Что же касается путешествий в будущее – они гораздо более вероятны. Если лететь в аппарате со скоростью света, то время для его экипажа замедлится. И на Земле пройдет много лет, в то время как ты практически не изменишься. Второй способ путешествия в будущее – крионика, заморозка с последующей разморозкой. Пока и то, и другое технологически невозможно, но это лишь вопрос времени.
Часть IVЗагадки вселенной
Мы разобрали интересные факты, которые уже знаем про нашу Вселенную, и выяснили, какие законы физики лежат в их основе.
Сейчас же нас ждет погружение в неведомое. Единственное, что мы знаем, – что эти явления существуют. Но пока они остаются тайной за семью печатями.
Глава 20Темная материя
Темная материя – самая загадочная тема современной астрофизики.
Она потому и называется темной, что мы не можем ее увидеть – ни в оптическом диапазоне, ни уловить с помощью приборов, реагирующих на электромагнитное излучение. Однако мы твердо знаем: темная материя существует. Ведь она проявляет себя в гравитационном взаимодействии. А значит, по крайней мере имеет массу.
По оценкам международной группы ученых, 80 % вещества Вселенной приходится на темную материю. То есть состоит неизвестно из чего.
И открытие этого феномена сулит человечеству гигантские перспективы. Возможно, даже бóльшие, чем изобретение электричества.
Впервые термин «темная материя» использовал голландский астроном Якобус Каптейн 99 лет назад. С тех пор вопрос о том, что представляет собой это загадочное вещество, остается открытым.
Что такое темная материя
Темная материя – вид скрытого вещества. Она не участвует в электромагнитном взаимодействии, как «обычная» известная нам материя. Поэтому мы не можем ее обнаружить.
Как же мы тогда узнали, что темная материя существует?
Темная материя проявляет себя в гравитационном взаимодействии. Общая масса каждой галактики в несколько раз превышает суммарную массу ее звезд.
Когда с помощью законов физики и математики ученые измерили массу галактик, она получилась в 10 раз меньше, чем должна быть. Кому именно «должна»? Законам физики: если бы галактика весила мало и в ней не было темной материи, то все звезды давно бы разлетелись.
Попробую объяснить наглядно. Представьте большой диск, на который сели несколько человек. И мы начали этот диск крутить. Когда он достигнет большой скорости, люди начнут слетать с него и падать за его пределы. Так вот, с галактиками то же самое: они вращаются так быстро, что звезды должны разлетаться!
Грубо говоря, темная материя – это та скрытая масса, которая утяжеляет галактику до нужных физических величин, чтобы она не распадалась.
Если говорить максимально просто: мы видим, что масса во Вселенной, в частности у галактик, в разы больше, чем должна быть. Если сложить массу всего вещества, которое мы можем обнаружить (звезды, скопления, туманности, черные дыры и т. п.), этого не хватает, чтобы объяснить, откуда такая гравитация. Для этого масса должна быть еще выше. Эту «лишнюю» массу и записали на счет темной материи.
Без темной материи в космосе недостаточно массы для образования звезд. Без нее вещество «разбредалось» бы по космосу. Темная материя обеспечивает необходимую массу, которая запускает процесс образования звезд.
Примерное распределение вещества для среднестатистической эллиптической галактики выглядит так:
• 15 % массы приходится на горячий газ;
• 5 % – на светящуюся видимую материю;
• оставшиеся 80 % приходятся на темную материю.
Каковы доказательства, что темная материя существует?
Гипотеза о существовании темной материи родилась в теоретической физике. В экспериментальной физике обнаружить ее в каком-либо виде пока не удалось. Но есть убедительные экспериментальные доказательства того, что «лишняя» масса существует.
Звезды и галактики движутся с совсем другими скоростями, чем двигались бы при условии, что темной материи не существует.
Горячего газа в галактиках слишком много. Если бы лишней массы не было, галактика не смогла бы его удержать.
Гравитационные линзы. Свет, идущий от удаленных объектов, искажен гораздо больше, чем должен.
Недавнее интересное открытие в очередной раз подтвердило ее существование.
Астрономы обнаружили сгусток темной материи, которая создавала визуальные клоны далекой галактики.
Таинственный объект гамильтона
В 2013 году астроном Тимоти Гамильтон из Университета в Портсмуте (штат Огайо) изучил данные космического телескопа «Хаббл» и обнаружил странную картину: три совершенно идентичных галактики, которые находятся в далеком уголке видимой части Вселенной – в 11 миллиардах световых лет от Земли. Загадочную «тройняшку» назвали в честь ее первооткрывателя – объект Гамильтона.
Галактики имели одинаковую форму, у них были одинаковые центры. Даже вещество распределялось в них по одинаковым траекториям. Такое совпадение ненормально. Не могут просто так возникнуть галактики-тройняшки, да еще и в одном месте!
Ученые были в тупике. В течение восьми лет они строили различные, самые фантастические гипотезы. И, наконец, смогли построить модель и установить причину, о которой написали в научном журнале Королевского астрономического общества.
Оказалось, что на пути от объекта Гамильтона до Земли находится скопление темной материи высокой плотности. Оно и искажает свет от галактики. Траектория света искажается из-за мощной гравитации, огибая по дуге скопление темной материи. И до нас доходят три одинаковых изображения одного и того же объекта.
Схема работы гравитационного линзирования. Иллюстрация
Скопление темной материи расположено в 7 миллиардах световых лет от Земли, как раз на пути движения света от объекта Гамильтона, и ее свет идет по искривленной траектории.
В общей теории относительности описано, как объекты с мощной гравитацией деформируют пространство-время. Этот эффект аналогичен ряби на поверхности воды, когда вода преломляет и линзирует свет Солнца и на дне бассейна возникают светящиеся узоры.
Почему открытие темной материи важно для человечества
Темная материя давно перестала быть локальной проблемой отдельной науки. Узнав ее природу, мы гораздо лучше поймем, как устроен наш мир, и, возможно, получим доступ к новым видам дешевой энергии и инновационным материалам.
В 1888 году Генрих Герц доказал существование электромагнитных волн (обратите внимание, какое красивое число – 1888!). За этим последовал шквал открытий. Ученые узнали, как устроен атом, открыли, что существуют галактики, начали использовать новые виды энергии, ранее недоступные человечеству. И наша жизнь кардинально изменилась!
Сейчас 22-й год XXI века. И новым сравнимым по масштабу открытием может быть природа темной материи.
Даже если выяснится, что ее нет и это только нелепая гипотеза, все равно это приведет к перевороту в современной физике. Такое уже было в нашей истории. Ведь открытие электромагнитных волн отправило в небытие понятие «эфир», в котором якобы движутся все космические объекты. Никакого эфира нет, но это было важно доказать для дальнейшего прогресса в физике.
Вселенная, которую мы уже немного успели изучить, почти полностью «электромагнитная». То есть видимое вещество активно взаимодействует со светом. Все химические элементы, из которых мы состоим, воздух, которым мы дышим, пища, которую мы едим, наши дома и одежда и все, что мы можем видеть, – все это «нормальная» материя. Однако во Вселенной есть в пять раз больше массы, которая теоретически может не состоять из известных на сегодня 118 природных элементов. И человечеству важно узнать, из чего состоит эта скрытая масса.
Древние греки, например, знали об электричестве. Для них это был праздничный трюк – собрать клочки бумажки расчес-кой, намагниченной после причесывания.
Пока мы не начали всерьез экспериментировать с электричеством и магнетизмом, создавая двигатели и генераторы, человечество не представляло себе масштаб электромагнитного взаимодействия. Именно то, что мы поняли явление электромагнетизма, создало наш современный мир.
Понимание темной материи может быть в пять раз бóльшим технологическим благом, чем раскрытие секретов электричества. Просто потому, что за скрытой массой пропорционально стоит бóльшая часть Вселенной.
К открытию электромагнетизма тоже поначалу относились скептически, совершенно не понимая ни сути явления, ни как его можно использовать. Джеймс Максвелл, открывший знаменитые уравнения, описывающие электромагнитное поле, не мог объяснить журналисту, зачем они нужны.
Главным провидцем оказался знаменитый физик Майкл Фарадей – первооткрыватель электромагнитной индукции.
Английский государственный деятель и писатель Уильям Гладстон спросил Фарадея:
– Какая польза от вашего электричества?
На что Фарадей быстро нашелся:
– Однажды, сэр, вы сможете обложить его налогом!
Что впоследствии и подтвердилось. Ведь сейчас наш мир и вся промышленность и экономика крутятся вокруг электричества.
Темная материя может обеспечить прорыв не только на Земле, но и в космосе. Сейчас для ученых и инженеров очевидно, что с текущим уровнем знаний о космосе далекие звезды и тем более галактики нам не покорить (подробнее об этом мы поговорим в главе про космическую экспансию). И самый очевидный прорыв находится в разгадке тайны темной материи.
Это может быть нашим ключом к контролю за пространством-временем. Раскрыв тайну темной материи, мы получим надежду на полноценные межзвездные путешествия!
Ну и, наконец, мы сможем понять, как и почему расширяется наша Вселенная. И предсказать, что станет с ней в будущем.
Что же представляет собой темная материя? Четыре гипотезы
Предположений о том, что же такое темная материя, в современной физике огромное количество. Но глобально их все можно свести к четырем типам:
1. «Обычное» вещество. Темная материя может представлять собой совокупность черных дыр, нейтронных звезд, планет-изгоев и т. п. То есть различные объекты, которые трудно обнаружить.
Особенно яркими претендентами на титул «объекты для темной материи» были коричневые и красные карлики. Светятся они еле-еле, а мы точно знаем, что их в десятки раз больше, чем звезд типа нашего Солнца.
Эта гипотеза считалась весьма вероятной на заре исследования темной материи. Сейчас же к ней относятся скептически, ведь черные дыры и другие слабо излучающие объекты можно отлавливать по их взаимодействию с окружающей материей. По оценкам астрофизиков, на все эти объекты может приходиться максимум 10 % вещества галактик. Но никак не 80 %.
Впрочем, процент «нормального» вещества постоянно увеличивается. Методы обнаружения совершенствуются, мы можем замечать то, что ранее было скрыто. Все 80 % таким образом не объяснить, но часть – можно.
2. Темная материя состоит из частиц, которые мы еще не открыли. Вероятнее всего, эти частицы должны быть довольно крупными, так как проявляют себя в гравитационном взаимодействии. И эти частицы не заряжены, иначе они проявляли бы себя в электромагнитном взаимодействии.
Частицы темной материи, скорее всего, и сейчас прошивают Землю, пролетая сквозь нее с огромной скоростью. Но никак не взаимодействуют с ней. С одной стороны, их трудно поймать, с другой – от них трудно экранироваться. И это плюс – значит, частицы темной материи есть везде. Осталось только обнаружить их.
Что это может быть? Например, нейтрино. Масса нейтрино практически нулевая, нейтрино слабо взаимодействует с приборами. Эти частицы ежедневно прошивают нашу Землю, но уловить их практически невозможно. А что, если во Вселенной их такое громадное количество, что даже при их практически нулевой массе они могут внести существенный вклад? И оказаться тем самым элементом темной материи.
Есть и гипотетические частицы – например, аксионы. У них нулевой заряд, и при взаимодействии они распадаются на два фотона. Но пока аксионы существуют только на уровне гипотезы.
И открытым остается вопрос, составляют ли эти частицы некое подобие «обычной» материи. Могут ли разные частицы объединяться, например, в атомы «темного вещества»?
В любом случае гипотеза, что в основе темной материи лежат какие-либо неуловимые частицы, пока является лидиру-ющей в научном сообществе.
Сейчас ученые по всему миру пытаются эти частицы отловить. Напрямую это сделать очень сложно (они же, как мы помним, «не любят» взаимодействовать с приборами).
Ученые и инженеры постоянно создают хитроумные детекторы для различных частиц – кандидатов на звание «элементов темной материи». Но ни один из них пока не сработал. Если у кого-то получится приблизиться к разгадке – Нобелевская премия обеспечена! Сами физики называют создание детекторов темной материи лотереей по экспериментальной физике. Вероятность победы невелика, но победитель получит все. И окупит все годы своих трудов.
Большой адронный коллайдер для поиска этих частиц годится слабо, хотя и может косвенным образом отловить их – за счет регистрации продуктов распада.
И, видимо, этот косвенный метод будет ключевым в поиске частиц темной материи: когда мы зафиксируем взаимодействие этих неведомых частиц с другими и увидим их косвенные проявления, например в виде фотонов.
3. Что-то не так с гравитацией. Точнее, с гравитацией как силой природы все прекрасно. Что-то не так с нашей теорией гравитации.
«Зачем плодить новые странные сущности и частицы? Давайте пересмотрим теорию гравитации», – говорят адепты этой гипотезы.
Альтернативные теории гравитации – например, модифицированная ньютоновская динамика (MOND) – способны объяснить отдельные явления. Но пока не удалось создать теорию гравитации, которая объяснит все явления в совокупности и непротиворечиво.
4. Темной материи не существует. Это как раньше с эфиром. Все думали, что он есть (иначе как световые волны могут путешествовать по пустому пространству?). Но оказалось, что свет – не только частицы, но и волна, и эфир для перемещения ему не нужен. Так и тут. Возможно, у уже известных законов физики есть обратная сторона, которую мы не знаем. Но, скорее всего, он завязан на предыдущих сценариях.
Что даст человечеству открытие темной материи?
На сегодня мы знаем 118 элементов таблицы Менделеева. И это лишь 20 % вещества. Представляете, какие тайны могут быть сокрыты в остальных 80 %?
Новые материалы и технологии
Когда в 1960 году Теодор Мейман представил свой первый лазер, он до конца не представлял, как и зачем его можно использовать. А теперь он активно применяется в медицине, химии и навигации. Если темная материя никак себя не проявляет, кроме гравитационного взаимодействия, значит, на нее не накладываются электромагнитные ограничения. Представляете, какие возможности это открывает в материаловедении?
Одинаковые заряды отталкиваются, и сложить сверхплотное вещество в земных условиях невозможно. Только объекты типа нейтронных звезд и черных дыр своей мощной гравитацией вдавливают электроны в протоны и делают сверхплотное вещество.
Нам же темная материя потенциально открывает дорогу к сверхпрочным материалам. Представьте, например, дом из стен толщиной с бумагу, но эти стены держат тепло и ветер лучше кирпича. Да это еще и ультрадешевый материал, ведь чего-чего, а темной материи в космосе 80 %. То есть бери – не хочу!
Энергия. Откровенно говоря, энергию мы пока добываем не очень эффективно. Слишком много уходит в тепло, КПД довольно низкий. Даже растения эффективнее используют солнечную энергию для роста и жизни, чем мы со своей инженерией и законами физики. Но все-таки электрическая энергия и энергия атома – это большой шаг вперед по сравнению с углем и паровыми двигателями.
Понимание темной материи может теоретически дать нам доступ к энергии, которая будет намного эффективнее электричества.
Потенциально, используя гравитацию, мы сможем получить доступ к дешевому и неисчерпаемому источнику энергии. Ведь темная материя – идеальный гравитационный материал! Узнав природу темной материи и научившись ею манипулировать, мы получим шанс преодолеть ограничения в ресурсах.
А что же будет, если мы поймем, что темной материи нет и мы просто неправильно понимали гравитацию? В любом случае такое открытие развяжет нам руки и даст лучшее понимание гравитации. А значит, и управление силами притяжения. Как открытие электромагнитного поля в свое время уничтожило понятие «эфир»: что ж, мы выяснили, что эфира нет, но сколько новых возможностей по манипулированию энергией мы получили! И здесь нас должна ждать похожая история.
Освоение космоса. Будущее человечества неизбежно связано с космической экспансией.
На Земле не так безопасно, как кажется. Человечество развилось в период относительного спокойствия. Однако за всю биологическую историю планеты было 5 случаев крупного массового вымирания видов и еще 20 – менее масштабных. И только освоение других планет (говоря экономическим термином, диверсификация жизни) позволит увеличить шансы на выживание.
А как осваивать космос, путешествовать в межзвездном пространстве, если мы не знаем, из чего состоит 80 % его вещества?
Путешествия со скоростью света. Пока это из области научной фантастики. Но ключевое слово здесь – «научной». Научная фантастика позволяет экстраполировать факты и законы дальше, в будущее, и шире смотреть на мир.
Расстояния в космосе – гигантские. Если мы будем передвигаться на уровне третьей космической скорости (скорость, при которой аппарат покинет Солнечную систему, третья космическая скорость относительно Солнца равна 46,9 км/с), до других звездных систем нам лететь сотни и тысячи лет. Колонизация во многом потеряет свой смысл.
Поэтому нам важно летать близко к скорости света, а возможно, и еще быстрее. Как это сделать, если скорость света – максимальная величина? Искривив пространство-время! А это возможно только с помощью создания мощной гравитации (в главе, посвященной будущему, мы разберем, как с научной точки зрения может работать варп-двигатель).
И темная материя – первый кандидат на создание массивных гравитационных объектов.
Мировоззрение. Кроме практической пользы, будет польза философская. Мы серьезно уточним ответ на вопрос, как устроена наша Вселенная. И почему она расширяется с ускорением.
В XIX–XX веках был расцвет философии. Создавались мировоззренческие концепции, которые помогали человечеству определиться с целями и установить моральные границы. Сейчас же философия пребывает в стагнации. Искать смысл жизни в накоплении и потреблении – слишком примитивная задача. Религиозные и идеалистические мировоззрения – в очевидном кризисе.
Человечество не может развиваться без смысла. Это наша важная особенность как вида. По мнению Юваля Ноя Харари, автора книги «Sapiens. Краткая история человечества», единственное отличие человека от других животных в том, что люди могут вдохновиться одной идеей и вместе работать над ее воплощением.
Нужны новые крупные научные открытия, чтобы человечество смогло найти новые мировоззренческие смыслы. Иначе как нам двигаться дальше?