Популярная история — от электричества до телевидения — страница 11 из 39

в настоящее время работают разнообразные термопары, широко применяющиеся во всей мировой промышленности для измерения температуры. Термопары применяют в приборостроении, металлургии, нефте-газодобыче, авиации, космонавтике, медицине и еще в сотнях отраслей. Цены термопар занимают диапазон от очень дешевых — для бытовых мультиметров, до очень дорогих для космонавтики. И все это многообразие основано на открытии уроженца Эстонии Томаса Зеебека.

1823 г. Эрстед и Фурье

В 1823 году датские физики Эрстед и Фурье на основании устных сообщений о работах Томаса Зеебека 1821–1822 г. г. построили первый термоэлектрический столб — соединенные последовательно элементы из сурьмяно-висмутовых пластинок. На этом столбе датчане продемонстрировали электрохимическое действие путем разложения медных солей. Свою работу Эрстед и Фурье опубликовали в Дании в 1823 году, и предложили Зеебеку его эффект называть термоэлектрическим — на что Томас Зеебек возражал. Окончательно электрическая природа эффекта Зеебека была экспериментально показана в 1836 году, когда физики Антинори и Линари получили электрическую искру от столба из 25 сурьмяно-висмутовых элементов.

1825 г. Стёрджен

В 1825 году английский изобретатель военный преподаватель Уильям Стёрджен (1783–1850) продемонстрировал свой первый электромагнит.

«Первый в мире электромагнит, продемонстрированный Вильямом Стердженом 23 мая 1825 года Британскому обществу искусств, представлял собой согнутый в подкову лакированный железный стержень длиной 30 см и диаметром 1,3 см, покрытый сверху одним слоем неизолированной медной проволоки. Питался он от химического источника тока. Весил электромагнит 200 Г, а удерживал на весу 3600 Г. Этот магнит значительно превосходил по силе природные магниты такого же веса. Это было блестящее по тем временам достижение.». [39].

1826 г. Ом

В 1826 году уроженец Эрлангена (сын слесаря) доктор математики и приват-доцент математики в Кёльне Георг Симон Ом (1787–1854) путем экспериментов установил формулу своего впоследствии знаменитого и простого «закона Ома»V = IR, которая связывала электроскопическую силу V, ток I, и сопротивление (у Ома проводимость) R.

В 1827 году в Берлине Георг Ом опубликовал работу «Die Galvanische Kette, Mathematisch Bearbeitet», в которой представил свой, впоследствии, фундаментальный закон, но эта работа прошла незамеченной. Непризнанный гений Георг Ом вынужден был в 1828 году покинуть кафедру в Кёльне и 6 лет на собственные скудные средства вести научную и экспериментальную работу самостоятельно без чьей-либо поддержки. В 1833 году Георг Ом получил должность профессора физики в Нюрнберге, но его закон все еще не был признан во всем научном мире. В Германии знали о работах Ома и относились к ним с большим уважением, в то время как в Англии и Франции работы Георга Ома «не замечали». Только в 1837 году, когда французский физик Клод Пулье (1798–1868) «переоткрыл» закон Ома под своим именем (Пулье чуть было не стал автором «закона Пулье», но в 1845 году в письме признался, что читал работы Георга Ома по гальванической цепи и считает его автором приоритета от 1827 года), и в 1839 году, когда один из изобретателей гальванометра Поггендорф показал, что исследования в области гальванических батарей, получаемые в эксперименте с большим трудом, весьма просто следуют из «закона Ома» — англо — франко — итальянский научный мир со скрипом признал фундаментальный приоритет немецкого математика. В 1841–60 гг. работа Ома была переведена на английский, итальянский, французский языки, в 1841 году Лондонское королевское общество опомнилось и наградило Георга Ома медалью.

Реплика от автора

Пренебрежительное отношение к великому основоположнику Георгу Ому было и в России. Если мы откроем знаменитый учебник физики Краевича [105], по которому учились все россияне (включая, естественно, Ульянова-Ленина, Александра Попова и др.) мы прочитаем, что «формула германского ученого Ома была подтверждена впоследствии на опыте Ленцом и Пулье» (!!!), т. е. Пулье для Краевича более авторитетен чем Ом. Имя Пулье — забыто, а имя Ома постепенно стало известно любому школьнику.

1827 г. Ампер

В 1827 году математик и физик Андре-Мари Ампер завершил публикацию своих работ по магнетизму и электричеству фундаментальной работой по электродинамике «Théorie mathématiques des phénomènes électro-dynamiques, uniquement déduite de l’expérience», [40], которая поначалу была встречена учеными неоднозначно, но затем принесла автору всемирную славу.

«Математика, механика и физика обязаны А. важными исследованиями; его электродинамическая теория стяжала ему неувядаемую славу. Его взгляд на единую первоначальную сущность электричества и магнетизма, в чем он по существу сходился с датским физиком Эрштедтом, превосходно изложен им в „Recueil d’observations électrodynamiques“ (Париж, 1822), в „Précis de la theorie des phénomènes électrodynamiques“ (Париж, 1824 г.) и в „Theorie des phénomènes électrodynamiques“.». [4].

Рис. 13. Оригинальные рисунки Ампера из его книги по электродинамике [40] /


В 1827 году наблюдатель Бюро долгот и помощник Андре Ампера в его исследованиях Феликс Савари (1787–1841) первым из физиков отметил колебательный характер разряда конденсаторов. Савари этому важному для радиотехники явлению не придал значения.

1829 г. Генри

Ориентировочно в 1829 году американский физик преподаватель Академии в Олбани Джозеф Генри (1797–1878) начал работы, в ходе которых обнаружил явления индукции и создал первые прототипы трансформаторов.


Рис 14. Опыт Генри по взаимоиндукции катушек, по [43].


Первоначально Генри вызывал ток в катушке, двигая около нее магнит, а затем заменил этот магнит на катушку и обнаружил, что катушка (поз 3. на рис. 14), подсоединенная к гальваническому элементу при движении вызывает ток в неподвижной катушке, что и фиксируется электрометром. Результаты своих работ Генри не публиковал, т. к. вел их на любительской основе летом и хотел накопить больше научного материала. Это привело к тому, что раньше свои эксперименты обнародовал английский физик Фарадей в 1832 году.

2-й комментарий — сценарии Генри — Фарадей и Попов — Маркони

Исторический сценарий начала 19-го века в паре Генри — Фарадей весьма схож с историческим сценарием конца 19-го века в паре Попов — Маркони. Американец Джозеф Генри не имел своей лаборатории, и использовал для исследований каникулы, когда превращал один из классов в свой научный полигон, — это привело к закрепленному публикациями приоритету Фарадея, хотя фактически Генри его опережал. Россиянин Александр Попов по материальным соображениям вынужден был летом уезжать из Петербурга, и работать директором электростанции на ярмарке в Нижнем Новгороде (см. далее), и на этот период его научная деятельность останавливалась, что в итоге привело к большим достижениям Маркони и отставанию русского первопроходца.

Глава 8. 1830 г. — 1839 г.Опыты Фарадея, опыты Генри, телеграф Шиллинга, телеграф Морзе, элемент Даниэля

1831 г. Фарадей, Генри

В 1831 году физик Майкл Фарадей завершил ряд удачных экспериментов, он обнаружил связь между током и магнетизмом и создал первый макет электрогенератора.

«И тем не менее именно Фарадею суждены были великие открытия. Великий реалист, он стихийно рвал путы эмпирики, некогда навязанные ему Дэви, и в эти минуты его осеняло великое прозрение — он приобретал способность к глубочайшим обобщениям. Первый проблеск удачи появился лишь 29 августа 1831 года. В этот день Фарадей испытывал в лаборатории несложное устройство: железное кольцо диаметром около шести дюймов, обмотанное двумя кусками изолированной проволоки. Когда Фарадей подключил к зажимам одной обмотки батарею, его ассистент, артиллерийский сержант Андерсен, увидел, как дернулась стрелка гальванометра, подсоединенного к другой обмотке. Дернулась и успокоилась, хотя постоянный ток продолжал течь по первой обмотке. Фарадей тщательно просмотрел все детали этой простой установки — все было в порядке. Но стрелка гальванометра упорно стояла на нуле. С досады Фарадей решил выключить ток, и тут случилось чудо — во время размыкания цепи стрелка гальванометра опять качнулась и опять застыла на нуле! Фарадей был в недоумении: во-первых, почему стрелка ведет себя так странно? Во-вторых, имеют ли отношение замеченные им всплески к явлению, которое он искал? Вот тут-то и открылись Фарадею во всей ясности великие идеи Ампера — связь между электрическим током и магнетизмом. Ведь первая обмотка, в которую он подавал ток, сразу становилась магнитом. Если рассматривать ее как магнит, то эксперимент 29 августа показал, что магнетизм как будто бы рождает электричество. Только две вещи оставались в этом случае странными: почему всплеск электричества при включении электромагнита стал быстро сходить на нет? И более того, почему всплеск появляется при выключении магнита? На следующий день, 30 августа, — новая серия экспериментов. Эффект ясно выражен, но тем не менее абсолютно непонятен. Фарадей чувствует, что открытие где-то рядом.». [41].

Автор книги о Максвелле называет эксперимент 17 октября 1831 г. триумфальным.

«Эксперимент триумфальный — 17 октября. Фарадей заранее знает, как это будет. Опыт удается блестяще. «Я взял цилиндрический магнитный брусок (3/4 дюйма в диаметре и 8 1/4 дюйма длиной) и ввел один его конец внутрь спирали из медной проволоки (220 футов длиной), соедин