51 Sirtori, C. R., Gatti, E., Mantero, O., Conti, F., Agradi, E., Tremoli, E. et al. Clinical experience with the soybean protein diet in the treatment of hypercholesterolemia. Am. J. Clin. Nutr. 32, 1645–1658, doi:10.1093/ajcn/32.8.1645 (1979).
52 O’Connor, T. P., Roebuck, B. D., & Campbell, T. C. Dietary intervention during the post-dosing phase of L-azaserine-induced preneoplastic lesions. J. Natl. Cancer Inst. 75, 955–957 (1985).
53 O’Connor, T. P., Roebuck, B. D., Peterson, F., & Campbell, T. C. Effect of dietary intake of fish oil and fish protein on the development of L-azaserine-induced preneoplastic lesions in rat pancreas. J. Natl. Cancer Inst. 75, 959–962 (1985).
54 Abdelhamid, A. S., Brown, T. J., Brainard, J. S., Biswas, P., Thorpe, G. C., Moore, H. J. et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 11, CD003177, doi:10.1002/14651858.CD003177.pub4 (2018).
55 Simopoulos, A. P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8, 128, doi:10.3390/nu8030128 (2016).
56 Simopoulos, A. P. & DiNicolantonio, J. J. The importance of a balanced omega-6 to omega-3 ratio in the prevention and management of obesity. Open Heart 3, e000385, doi:10.1136/openhrt-2015 -000385 (2016).
57 Ponnampalam, E. N., Mann, N. J., & Sinclair, A. J. Effect of feeding systems on omega-3 fatty acids, conjugated linoleic acid and trans fatty acids in Australian beef cuts: potential impact on human health. Asia Pac. J. Clin. Nutr. 15, 21–29 (2006).
58 Grosso, G., Yang, J., Marventano, S., Micek, A., Galvano, F., & Kales, S. N. Nut consumption on all-cause, cardiovascular, and cancer mortality risk: a systematic review and meta-analysis of epidemiologic studies. Am. J. Clin. Nutr. 101, 783–793, doi:10.3945/ajcn.114.099515 (2015).
59 Schwingshackl, L., Hoffman, G., Missbach, B., Stelmach-Mardas, M., & Boeing, H. An umbrella review of nuts intake and risk of cardiovascular disease. Current Pharm. Design 23, 1016–1027 (2017).
60 Keys, A. Seven countries. A multivariate analysis of death and coronary heart disease (Harvard University Press, 1980).
61 Kromhout, D., Menotti, A., Bloemberg, B., Aravanis, C., Blackburn, H., Buzina, R. et al. Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: the Seven Countries Study. Prev. Med. 24, 308–315 (1995).
62 McGee, D. L., Reed, D. M. & Yano, K. Ten-year incidence of coronary heart disease in the Honolulu Heart Program: relationship to nutrient intake. Am. J. Epidemiol. 119, 667–676 (1984).
63 Kromhout, D. & Coulander, C. L. Diet, prevalence and 10 year mortality from coronary heart disease in 871 middle-aged men. Am. J. Epidemiol. 119, 733–741 (1984).
64 Garcia-Palmieri, M. R., Sorlie, P., Tillotson, J., Costas, R. Jr., Cordero, E., & Rodriguez, M. Relationship of dietary intake to subsequent coronary heart disease incidence: the Puerto Rican Heart Health Program. Am. J. Clin. Nutr. 33, 1818–1827 (1980). NOTES 283
65 Morris, J. N., Marr, J. W., & Clayton, O. B. Diet and heart: a postscript. Brit. Med. J. 2, 1307–1314 (1977).
66 Hu, F. B., Stampfer, M. J., Manson, J. E., Rimm, E., Colditz, G. A., Rosner, B. A. et al. Dietary fat intake and the risk of coronary heart disease in women. New Engl. J. Med. 337, 1491–1499, doi:10.1056/NEJM199711203372102 (1997).
67 Hu, F. B., Manson, J. E., & Willett, W. C. Types of dietary fat and risk of coronary heart disease: a critical review. J. Am. Coll. Nutr. 20, 5–19 (2001).
68 Youngman, L. D., Park, J. Y., & Ames, B. N. Protein oxidation associated with aging is reduced by dietary restriction of protein or calories. Proc. National Acad. Sci. 89, 9112–9116 (1992).
69 De, A. K., Chipalkatti, S., & Aiyar, A. S. Some biochemical parameters of ageing in relation to dietary protein. Mech Ageing Dev 21, 37–48 (1983).
70 Sanz, A., Caro, P., & Barja, G. Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. J. Bioenergetics Biomembranes 36, 545–552 (2004).
71 Huang, H. H., Hawrylewicz, E. J., Kissane, J. Q., & Drab, E. A. Effect of protein diet on release of prolactin and ovarian steroids in female rats. Nutrition Reports International 26, 807–820 (1982).
72 Asao, T., Abdel-Kader, M. M., Chang, S. B., Wick, E. L., & Wogan, G. N. Aflatoxins B and G. J. Am. Chem. Soc. 85, 1706–1707 (1963).
73 Wogan, G. N., & Newberne, P. M. Dose-response characteristics of aflatoxin B1 carcinogenesis in the rat. Cancer Res. 27, 2370–2376 (1967).
74 Ayres, J. L., Lee, D. J., Wales, J. H., & Sinnhuber, R. O. Aflatoxin structure and hepatocarcinogenicity in rainbow trout. J. Natl. Cancer Inst. 46, 561–564 (1971).
75 Campbell, T. C., Sinnhuber, R. O., Lee, D. J., Wales, J. H., & Salamat, L. A. Brief communication: hepatocarcinogenic material in urine specimens from humans consuming aflatoxin. J. Nat. Cancer Inst. 52, 1647–1649 (1974).
76 Campbell, T. C. & Hayes, J. R. The role of aflatoxin in its toxic lesion. Tox. Appl. Pharm. 35, 199–222 (1976).
77 Campbell, T. C. Present day knowledge on aflatoxin. Philadelphia Journal of Nutrition 20, 193–201 (1967).
78 Campbell, T. C., Caedo, J. P., Jr., Bulatao-Jayme, J., Salamat, L., & Engel, R. W. Aflatoxin M1 in human urine. Nature 227, 403–404 (1970).
79 Campbell, T. C. Chemical carcinogens and human risk assessment. Fed. Proc. 39, 2467–2484 (1980).
8 °Campbell, T. C., & Hayes, J. R. Role of nutrition in the drug metabolizing system. Pharmacol. Revs. 26, 171–197 (1974).
81 Hayes, J. R., & Campbell, T. C., in Modifiers of chemical carcinogenesis (ed. T. J. Slaga), 207–241 (Raven Press, 1980).
82 Chen, J., Campbell, T. C., Li, J., & Peto, R. Diet, life-style and mortality in China. A study of the characteristics of 65 Chinese counties. (Oxford University Press; Cornell University Press; People’s Medical Publishing House, 1990).
83 Campbell, T. C., Chen, J., Liu, C., Li, J., & Parpia, B. Non-association of aflatoxin with primary liver cancer in a cross-sectional ecologic survey in the People’s Republic of China. Cancer Res. 50,6882–6893 (1990).
84 Campbell, T. C. Nutrition renaissance and public health policy. J. Nutr. Biology 3, 124–138, doi:10. 1080/01635581.2017.1339094 (2017).
85 Campbell, T. C. Cancer prevention and treatment by wholistic nutrition. J. Nat. Sci. Oct 3, e448 (2017).
86 Weisburger, E. K. History of the bioassay program of the National Cancer Institute. Prog. Exp.Tumor Res. 26, 187–201 (1983).
87 International Agency for Cancer Research. Press release: IARC monographs evaluate consumption of red meat and processed meat. (2015).
88 Wikipedia. Carcinogen. https://en.wikipedia.org/wiki/Carcinogen (2020).
89 National Toxicology Program. Report on carcinogens. 499 (2011).
90 National Toxicology Program. Ninth report on carcinogens (rev. January 2001).
91 National Toxicology Program. https://ntp.niehs.nih.gov/.
92 Huff, J. Long-term chemical carcinogenesis bioassays predict human cancer hazards. Issues, controversies, and uncertainties. Ann. NY Acad. Sci. 895, 56–79 (1999).
93 Huff, J., Jacobson, M. F., & Davis, D. L. The limits of two-year bioassay exposure regimens for identifying chemical carcinogens. Environ. Health Perspect. 116, 1439–1442 (2008).
94 National Toxicology Program. 14th Report on Carcinogens, Process and Listing Criteria. (November 3, 2016). https://ntp.niehs.nih.gov/pubhealth/roc/process/index.html.
95 Knight, A., Bailey, J., & Balcombe, J. Animal carcinogenicity studies: 3. Alternatives to the bioassay. Altern. Lab. Anim. 34, 39–48 (2006).
96 Knight, A., Bailey, J., & Balcombe, J. Animal carcinogenicity studies: 2. Obstacles to extrapolation of data to humans. Altern. Lab. Anim. 34, 29–38 (2006).
97 Knight, A., Bailey, J., & Balcombe, J. Animal carcinogenicity studies: 1. Poor human predictivity. Altern. Lab. Anim. 34, 19–27 (2006).
98 Wikipedia. Human genome project. https://en.wikipedia.org/wiki/Human_Genome_Project (2018).
99 National Cancer Institute. What is cancer? (Updated February 9, 2015). http://www.cancer.gov /about-cancer/what-is-cancer.
100 Appleton, B. S., Goetchius, M. P., & Campbell, T. C. Linear dose-response curve for the hepatic macromolecular binding of aflatoxin B1 in rats at very low exposures. Cancer Res. 42, 3659–3662 (1982).
101 Dunaif, G. E. & Campbell, T. C. Dietary protein level and aflatoxin B1-induced preneoplastic hepatic lesions in the rat. J. Nutr. 117, 1298–1302 (1987).
102 Dunaif, G. E. & Campbell, T. C. Relative contribution of dietary protein level and aflatoxin B1 dose in generation of presumptive preneoplastic foci in rat liver. J. Natl. Cancer Inst. 78, 365–369 (1987).
103 Schulsinger, D. A., Root, M. M., & Campbell, T. C. Effect of dietary protein quality on development of aflatoxin B1-induced hepatic preneoplastic lesions. J. Natl. Cancer Inst. 81, 1241–1245 (1989).
104 Berwyn, B. IPCC: radical energy transformation needed to avoid 1.5 degrees global warming.Inside Climate News (2018). https://insideclimatenews.org/news/07102018/ipcc-climate-change-science-report-data-carbon-emissions-heat-waves-extreme-weather-oil-gas-agriculture.
105 Strona, G. & Bradshaw, C. J. A. Co-extinctions annihilate planetary life during extreme environmental change. Sci. Rpts. 8, doi:10.1038/s41598-018-35068-1 (2018).
106 MacFarlane, D. All the species that went extinct in 2018, and ones on the brink for 2019. Environment (2019). https://weather.com/science/environment/news/2019-01-02-extinct-animal-species-2018.
107 Sanchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entofauna: a review of its drivers. Biolological Conservation 232, 8–27 (2016).