Предположения и опровержения. Рост научного знания — страница 19 из 25

Теэтет. Послушай теперь меня внимательно, Сократ, ибо то, что я скажу тебе, не просто шутка.

Сократ. Обещаю приложить все свои силы, Теэтет, если ты избавишь меня от подробностей ваших достижений в теории чисел и будешь говорить языком, который я, обычный человек, могу понять.

Т. Следующий вопрос, который я собираюсь задать, является необычным, хотя он выражен в обычном языке.

С. Не нужно меня предупреждать: я весь внимание.

Т. Что я сказал между твоими двумя последними репликами, Сократ?

С. Ты сказал: «Следующий вопрос, который я собираюсь задать, является необычным, хотя выражен в обычном языке».

Т. И ты понял то, что я сказал?

С. Конечно. Твое предупреждение относилось к вопросу, который ты собирался задать мне.

Т. А что это был за вопрос, к которому относилось мое предупреждение? Можешь ты его повторить?

С. Твой вопрос? Дай подумать... О, вопрос был такой: «Что я сказал между твоими двумя последними репликами, Сократ?»


Впервые опубликовано в «Mind», N.S., 1954. (505:)


Т. Вижу, ты выполняешь свое обещание, Сократ, и внимательно слушаешь то, что я говорю. Но понимаешь ли ты тот вопрос, который только что процитировал?

С. Думаю, я могу доказать, что сразу же понял этот вопрос. Разве я ответил неправильно, когда ты задал его впервые?

Т. Правильно, правильно. Но согласись, ведь это необычный вопрос?

С. Нет. По-видимому, он был не очень вежлив, Теэтет, но, боюсь, в этом нет ничего необычного. Нет, я не вижу в нем чего-то необычного.

Т. Извини, если я был груб, Сократ. Поверь, я лишь хотел кратко указать на то, что важно на данном этапе нашей беседы. Однако интересно, что ты находишь мой вопрос вполне обычным (не считая его грубости). Некоторые философы считают этот вопрос невозможным, во всяком случае, таким, который нельзя понять, ибо он не имеет смысла*.

С. Почему твой вопрос не имеет смысла?

Т. Потому, что он косвенно ссылается на себя.

С. Я не вижу этого. Насколько я могу понять, твой вопрос относится лишь к предостережению, которое ты высказал, прежде чем задал вопрос.

Г. А к чему относилось мое предостережение?

С. Теперь я понимаю, что ты имеешь в виду. Твое предостережение относилось к вопросу, а вопрос — к предостережению.

Т. Но ты сказал, что понимаешь и предостережение, и вопрос?

С Мне не трудно было понять все, что ты сказал.

Т. По-видимому, это доказывает, что два предложения могут быть вполне осмысленными, несмотря на то что они косвенно говорят о самих себе — первое говорит о втором, а второе — о первом.

С. По-видимому, доказывает.

Т. И тебе не кажется это необычным?

* «Meaning». — Здесь речь идет о «смысловом» значении. — Примеч. пер.

506

С. Мне не кажется это необычным. Я думаю, это очевидно. И я не понимаю, зачем ты стараешься привлечь мое внимание к таким тривиальностям.

Т. Потому, что многие философы, по крайней мере неявно, не соглашались с этим.

С. Да что ты? Ты меня удивляешь.

Т. Я имею в виду тех философов, которые считают, что парадокс типа «Лжец» (вариант «Эпименида» мегариков) не возникает, если осмысленное и правильно построенное высказывание не может говорить о самом себе.

С. Я знаю «Эпименида» и «Лжеца», который говорит: «То, что я сейчас говорю, не истинно» (и ничего больше), и упомянутое тобой решение мне представляется привлекательным.

Т. Но оно не решает парадокса, если ты согласен, что косвенная ссылка на себя допустима. Как показали Лэнгфорд и Джордан (а до них Буридан), парадокс «Лжец» или «Эпиме-нид» можно сформулировать, используя косвенную саморе-ферентность вместо прямой.

С. Приведи мне эту формулировку.

Т. Следующее высказывание, которое я собираюсь произнести, истинно.

С. Ты не всегда высказываешь истину?

Г. Последнее мое высказывание было не истинно.

С. Поэтому ты хочешь взять его назад? Хорошо, начни сначала.

Т. Ты не понял, к чему приводят мои два высказывания, взятые вместе.

С. О, теперь я понимаю, что ты хотел сказать. Ты совершенно прав. Это опять все тот же старый «Эпименид».

Т. Я воспользовался косвенной самоотнесенностью вместо прямой, в этом все различие. И я думаю, этот пример доказывает, что парадоксы типа «Эпименида» нельзя решить только за счет утверждения невозможности самореферентных высказываний. Даже если прямая самореферентность невозможна или бессмысленна, косвенная самореферентность вполне обыч-

507

на. Я могу, например, сказать следующее: я уверен, что твое следующее замечание, Сократ, будет умным и уместным.

С. Это выражение твоей уверенности, Теэтет, для меня в высшей степени приятно.

Т. Это показывает, как легко возникают ситуации, когда высказывание одного человека говорит о высказывании другого человека, а последнее, в свою очередь, относится к высказыванию первого. Но раз мы видим, что парадоксы нельзя разрешить таким образом, мы можем также заметить, что и прямая самореферентность бывает вполне приемлема. Действительно, с давних пор известны многочисленные примеры непарадоксальных, хотя и самореферентных высказываний — самореферентные высказывания более или менее эмпирического характера и самореферентные высказывания, истинность или ложность которых устанавливается логическим рассуждением.

С. Не мог бы ты привести пример самореферентного высказывания, которое эмпирически истинно?

Т. ..........................................

С. Я не расслышал, что ты сказал, Теэтет. Повтори, пожалуйста, чуть погромче. Я уже не так хорошо слышу, как прежде.

Т. Я сказал: «Я теперь говорю так тихо, что славный старый Сократ не может разобрать, что именно я говорю».

С. Этот пример мне нравится. И я не могу отрицать, что когда ты говоришь так тихо, ты высказываешь истину. Нельзя отрицать, что эта истина носит эмпирический характер, ибо если бы я был моложе, твое высказывание не было бы истинным.

Т. Истинность моего следующего высказывания можно установить даже логически, например, посредством приведения к абсурду — излюбленным методом Евклида-геометра.

С. Я его не знаю. Полагаю, ты имеешь в виду не человека из Мегары. Мне кажется, я знаю, что ты подразумеваешь под «приведением» (reductio). Теперь ты хочешь сформулировать свою теорему? (508:)

Т. То, что я сейчас говорю, осмысленно.

С. Если ты не возражаешь, я попробую сам доказать твою теорему. Я начинаю с предположения о том, что твое последнее высказывание было бессмысленным. Но это противоречит твоему высказыванию, следовательно, твое высказывание ложно. Однако если некоторое высказывание ложно, то оно очевидно осмысленно. Таким образом, мое предположение абсурдно, что и доказывает твою теорему.

Г. Ты прав, Сократ. Ты доказал мою теорему, как ты ее называешь. Но некоторые философы могут тебе не поверить. Они скажут, что мое высказывание (или то, которое ты опроверг, т.е. «То, что я сейчас говорю, бессмысленно») было парадоксальным, поэтому относительно него можно доказать все, что угодно, — как его истинность, так и его ложность.

С. Я показал, что предположение об истинности высказывания «То, что я сейчас говорю, бессмысленно» ведет к абсурду. Пусть они похожим образом покажут, что предположение о его ложности (или об истинности твоей теоремы) также приводит к абсурду. Если они сделают это, то тогда они могут говорить о его парадоксальном характере или, если угодно, о его бессмысленности и бессмысленности твоей теоремы.

Т. Я согласен, Сократ. Кроме того, я совершенно уверен, что им это не удастся — по крайней мере до тех пор, пока под «бессмысленным высказыванием» они понимают выражение, нарушающее правила грамматики, или, иными словами, плохо построенное выражение.

С. Я рад твоей уверенности, Теэтет, но не слишком ли ты уверен?

Т. Если не возражаешь, я на некоторое время отложу ответ на твой вопрос. Сначала мне хотелось бы обратить твое внимание на то, что даже если бы кому-то удалось показать, что моя теорема или, возможно, ее отрицание парадоксальны, то это еще не означало бы, что их можно считать «бессмысленными» в наиболее распространенном смысле этого слова. Для этого нужно было бы показать, что признание истинности моей теоремы (или ложности ее отрицания, т.е. высказывания «То, (509:) что я сейчас говорю, бессмысленно») приводит к абсурду. Однако я склонен думать, что такого вывода не смог бы сделать человек, не понимающий смысла моей теоремы (или ее отрицания). Я также полагаю, что если можно понять смысл некоторого высказывания, то высказывание обладает смыслом. Опять-таки, если у него есть какие-то следствия (т.е. если из него что-то следует), оно также должно иметь смысл. Во всяком случае, такое понимание согласуется с обычным словоупотреблением. Как ты считаешь?

С. Я согласен.

Т. Конечно, я не хочу сказать, что не может существовать других способов употребления слова «осмысленно», например, один из моих друзей-математиков предложил называть высказывание «осмысленным» только в том случае, если у нас есть его доказательство. Но отсюда следовало бы, что о проблеме (предположении) Гольдбаха «Каждое четное число (за исключением 2) есть сумма двух простых чисел» нельзя сказать, осмысленно оно или нет, до тех пор, пока мы не получим его доказательства. Кроме того, даже обнаружение контрпримера не опровергло бы данного предположения, а лишь подтвердило бы его бессмысленность.

С. Такой способ употребления слова «осмысленно» мне кажется странным и неудобным.

Т. Другие несколько более либеральны. Они предлагают называть высказывание «осмысленным» только тогда, когда существует способ его доказательства или опровержения. Это делает предположение Гольдбаха осмысленным в тот момент, когда мы обнаруживаем для него контрпример (или метод его построения). Но до тех пор, пока у нас нет метода его доказательства или опровержения, мы не знаем, осмысленно оно или бессмысленно.