Иногда развитие науки сравнивают с боями по овладению зданием. Сначала прорыв на новый этаж, а затем схватки уже на этаже. Прорывы — и есть дело фундаментальных дисциплин, утверждающих новую парадигму, на основе которой идет потом прикладная работа.
Чтобы успешно идти вперед, теоретические исследования должны протекать в обстановке, свободной от утилитарных давлений производства. Известный английский физик XX столетия, лауреат Нобелевской премии Л. Брэгг выразил даже такую мысль. Если результат можно непосредственно использовать в технике, то его фундаментальность сомнительна. И еще условие: чтобы поток плодотворных для практики идей не пересыхал, следует создать солидный теоретический задел. По расчетам специалистов, для получения одной-двух годных к широкому внедрению разработок необходимо иметь до пятисот новых идей.
Часто говорят, что под влиянием социального заказа наука проделывает решающие скачки. Конечно, импульсы, бегущие от производства, промышленности и т. п., благотворны. Но само по себе наличие общественной потребности и даже четкое осознание нужды в том или ином научном продукте вовсе не составляют гарантии, что ответное слово ученых будет сей же час объявлено. Необходимо еще, чтобы в самой науке выросли соответствующие и именно теоретические посылки, позволяющие эту проблему взять. Таким образом, удачу в решении конкретной темы предваряет общее состояние знаний, глубина проработки фундаментального остова науки. Понятно, что ориентир прибрежной полосы, рассчитанный на ловлю истин, необходимых для типично производственных удовлетворений, ограничен. Такие истины часто не способны ответить даже на собственные вопросы производства.
Насколько трудно удовлетворять заявки жизни, не имея сложившейся системы знаний, питающей прикладные исследования, узнаём из опыта поколений.
В древней культуре Китая немало образцов выдающихся научных по своему времени находок. Однако то были лишь эпизодические вспышки блестящих догадок, так и не сложившихся в единый организм науки (в том понимании, как она обозначилась в XV–XVI столетиях в Европе). Причина именно в отсутствии целостной структуры знания, организованного, распределенного по системным единицам и сохраняющего эволюционную преемственность.
Впрочем, этого недоставало не только Китаю, но и фактически всем царствам и государствам древних цивилизаций. «Есть мнение», что наука не сложилась даже в Греции, не говоря уже о Египте, Риме, других оазисах античности. Не было науки, значит, не было систематических результатов, снабжающих практику. Более того, и в периоды развитого научного знания, каким оно стало, например, в новое время, часто возникали позиции, когда ученые оказывались бессильными выполнить практический наказ.
…В начале XIX века, в самый разгул континентальной блокады, объявленной Франции, Наполеон ставит отечественным химикам задачу создать искусственные красители (поскольку подвоз природных красок из английских колоний прекратился). Была названа высокая премия. Несмотря на ясность проблемы и солидный уровень химического знания, решить ее не смогли. Лишь в 60-е годы, когда обозначилась структурная теория вещества, удалось разгадать строение молекул красителей и синтезировать их искусственным путем. Как видим, социальный запрос не получил ответа. А вот другая заявка тех же блокадных дней была удовлетворена сполна.
Наполеон назначил тогда еще одну премию в миллион франков за изобретение продукта, могущего заменить ввозимый в страну сахар.
Сахар пришел с Востока. Первыми европейцами, вкусившими его сладость, были воины Александра Македонского, но только в XVIII столетии Европа узнала, что сахар («мед без пчел», «сладкая соль» и другие «вкусные» названия, под которыми он в ту пору жил) содержится в тростнике, из коего и добывался. Конечно, наиболее естественный способ получения этого деликатеса — использовать тот же тростник. Но Франция его не имела, и вообще он произрастал в Европе лишь на юге Испании, к тому же в прибрежных землях да на малых площадях. Надо было искать иные решения.
К счастью, наука кое-чем располагала. К тому времени уже провели микроскопический анализ срезов тростника и выявили строение кристаллов его сока. Этим удалось заложить теоретические разработки сахароносных веществ: состав, химические свойства, реакции. Следующий шаг — выявление подобных тростнику по физико-химическим характеристикам растений, их испытание на сахар и отбор подходящих в условиях Франции кандидатов на «сырьевую» вакансию. Взоры ученых мужей скрестились на свекле. И тоже не случайно. Еще чуть ранее, в том же XVIII веке, она попала в поле внимания немецкого химика Маркграфа. Ему посчастливилось выделить из белой свеклы сахаристое вещество, сходное соком с тростником. Он же провел и первые его исследования.
Наконец, наступили решающие события — поиск технологий. Остановились на том, чтобы выдавленный свекольный сок фильтровать, пропуская через уголь и просветляя известью. Этим научно-теоретическая часть работы завершилась, и результат был предъявлен промышленникам, которые тут же наладили добычу сахара в молниеносно построенных заводах.
Кстати, хотя в 1813 году блокада была снята, свекольное производство, поставленное к тому времени на широкий шаг, укрощать не стали. Наоборот. Оно набирало темп. Заметим, что вторым свеклосахарным заводом в Европе стал наш отечественный, сооруженный в 1812 году в селе Алябьеве Тульской области. Однако россияне поворачивались тогда в решении продовольственного дела проворнее иных сегодняшних агропромов. И еще заметим, что ныне страна наша производит ежегодно 12 миллионов тонн сахара, занимая первое место в мире и первые позиции в его потреблении (и истреблении на самогон) — 43 килограмма на душу в год!
Два противостоящих результата, а говорят об одном: без теоретической подоплеки науке не с руки отвечать брошенным практикой жизни выводам. Точнее сказать, то вообще не наука, если в ее составе нет мощного теоретического слоя.
Так, на одном полюсе научное знание тесно увязано с производственными проблемами, деловито обслуживая потребности жизни, а на другом уходят в выси абстрактных нагромождений, внешне как будто шатко увязанных со злобой дня. Потому-то желательно (и обязательно) говорить о пользе науки в двух измерениях: с позиций социально-практических отдач, а также с высоты ее внутренних задач. Однако приходится помнить, что если о практической лояльности прикладных, технических и т. п. исследований можно рассуждать уверенно, то общественно значимая прибавка от сугубо теоретических занятий просматривается вяло. В связи с этим неизбежно еще и еще не раз подтвердить: хотя конечным пунктом науки надо ставить материальные цели, осуществить это прямым включением, обходя «теоретические углы», по существу, не удается.
Итак наука неоднородна ни по составу, ни по тем ролям, которые предначертаны ее подразделениям. Перед нами достаточно богатый разброс структур и назначений, где высокотеоретичные, склонные к абстрактной жизни отделы соседствуют с прочно завязанными на эмпирию образованиями.
Все так. Но при подобном обилии разнообразий наука — единый организм, части которого, будучи функционально пригнаны, составляют особый мир, отграниченный от остальной реальности и примерно несущий свои поручения. Сугубым делом науки является добывание информации. Какие бы ее слои ни взять, каждый озабочен умножением знаний. Даже те ячейки, которые упираются в материальное производство и работают непосредственно на него, даже они заняты не самим производством, а получением знаний о нем. Другое дело, что эти знания тут же преобразуются в материальную силу, тогда как, например, абстрактные дисциплины добиваются такого успеха (если, конечно, добиваются) много времени спустя и целой серией переходов да превращений.
Науку и отличает от обычного производства идеальность ее продукта, погоня за знанием как таковым. В глубинах науки явно просматривается нацеленность на распознавание обступающих нас тайн, страсть к «разоблачению» природы и разгадке самих себя. Будь человечество устремленнее в преследовании узкожитейских надобностей, не проявляй такого «безыдейного», безадресного любознания, интереса знать просто так, ради знания, едва ли нам вообще довелось бы обзавестись наукой, по крайней мере в тех значениях, которыми она располагает ныне.
Характерно, что некоторые исследователи, говоря о фундаментальности, усматривают ее не только в теоретических (собственно фундаментальных) дисциплинах, но и в прикладных. Ю. Ходыко, например, ставит под сомнение практику распределения наук по дихотомической шкале на фундаментальные и прикладные. Он склонен рушить границу и говорит о комплексности исследований в том и другом случаях, оснастив, таким образом, прикладную науку собственной фундаментальной частью, и наоборот: придав фундаментальному слою прикладной оттенок (умалчивая, правда, о характере этого прикладного придатка к фундаментальной науке). Близкие взгляды делят академик Г. Флеров, а также Ю. Замятин, В. Веселовский, другие исследователи.
Здесь одно отклонение. Присваивая науке в качестве характеристической, точнее, даже определяющей ее природу особенности увеличение познаний, не притупляем ли ее социально-практическую обязанность? Подобные опасения реальны. Делая ударение на познавательные клавиши в работе ученого, мы рискуем вольно или непроизвольно укротить его прорыв к решению злободневных тем.
Высказаны сомнения, способна ли наука одинаково без ущерба для дела обихаживать оба эти фронта. Э. Резерфорд, например, склонялся к тому, что «нельзя служить Минерве (богине мудрости и покровительнице наук) и Маммону (богу богатства) одновременно». Что касается самого Э. Резерфорда, то он отдавал себя чистой науке. Как вспоминает один из любимых его учеников, П. Капица, великий физик не питал пристрастий к технике и техническим заказам, может быть, даже имел к ним предубеждение, поскольку считал, что исследования в этой области завязаны на денежном интересе.