Приборостроение — страница 10 из 13

40. Способы преобразования сигнала

Преобразование в измерительных головках реализуется тремя способами.

1. Механизм преобразования содержит только зубчатые механизмы.

2. Преобразование осуществляется рычажно-зуб-чато, т. е. используются оба способа прикрепления измерительных головок к ИП.

3. Преобразование с помощью пружинных прикреплений измерительной головки к измерительному устройству.

Поскольку речь идет о преобразовании одной величины в другую, другого масштаба, то само собой разумеется, что появляется такая характеристика, как передаточная, то есть передаточное число.

Особенностью первого типа преобразований является то, что в них преобразование перемещений может реализоваться в обоих направлениях: при двух других типах это преобразования невозможно.

С этой целью преобразование реализуется в механизм преобразования, так называемый индикатор часового типа.

В зубчатом механизме отношение чисел зубьев колеса, большего по диаметру, к числу зубьев шестерни, меньшей по диаметру, называется передаточным числом.

Если рассмотреть передаточное число, преобразующее малое перемещение в большое, т. е. когда передаточное число u ≥ 1, то для общего случая


где R – длина стрелки от оси поворота до ее свободного конца; φ – величина угла поворота стрелки, градус или радиус; R – перемещение свободного конца стрелки индикатора, градус, мм; l – величина перемещения измерительного наконечника (рейки).

Имеется в виду узел индикатора, перемещение которого при измерениях передается путем преобразования через колесо и шестерни к шкале со стрелкой.

У входного звена, т. е. у гриба, число зубьев обозначим, как z3. Тогда, выразив r как


где m – цена делений, мм; z3 – количество (число) зубьев у входного колеса, у которого радиус равен r, получим:

41. Передаточное число для рычажно-зубчатых индикаторов

Передаточное число для рычажно-зубчатых индикаторов можно вычислить двумя способами:

1) 


где I – длина плеча последнего рычага; R – длина плеча первого рычага;

– произведение передаточного числа зубчатых пар;

2) 


где I, R – длина плеча последнего и первого рычага соответственно; d3 – d6 – диаметры соответствующих колес в механизме.

Погрешность измерений для рассматриваемого типа преобразования – (0,005—0,015) мм при цене делений 0,01 мм.

Поверка рычажно-зубчатых индикаторов проводится по концевым мерам длины или другим способом.

Передаточное число для рычажно-зубчатых головок определяют по формулам: если головки однооборот-ные (две рычажные и одна зубчатая пары), то


для многооборотных (также две рычажных и одна зубчатая пары)


Величины передаточных чисел кулисных передач.


Наконец, о третьем способе механических преобразований, о преобразовании с пружинным механизмом.

Характерной особенностью этих механизмов является то, что передаточным механизмом измеряемой величины является полоска металлической ленты.

Следовательно, в расчетах используются упругие свойства скрученной пружинной ленты.

Передаточное число измеряется в единицах угловых градусов: град/мкм.

Передаточное число может быть определено двумя способами:

1) теоретически;

2) эмпирически


J – момент инерции поперечного сечения ленты, мм; I– свободная длина свернутой ленты, мм.

42. Приборы времени

Эти приборы в виде различных часов, как и весы, являются первыми известными приборами в истории человечества с незапамятных времен.

Сегодня перечисление только их разновидностей в быту заняло бы не одну страницу.

Приборы времени различают по принципу действия и по назначению.

Их разделяют на следующие классификационные группировки: механические; электромеханические; электронномеханические; атомно-молекулярные; синхронные; часы с непериодическим процессом.

Как видно из вышеприведенного списка, измерение времени проводится маятником в механических часах и временем разрядки или зарядки конденсатора до заданной емкости в электронных. В этом промежутке есть приборы, измеряющие время, которые используют импульсы электрического тока; квантовые свойства вещества; роторы электродвигателей и многое другое.

В каждом случае вопросы точности и погрешности измерений имеют свою специфику. Во всех случаях измерение времени сводится (или исходит) к установлению соответствия между двумя или более системами колебаний.

Поэтому, говоря о метрологических характеристиках часов в первую очередь имеют в виду постоянство частоты колебаний (или автоколебаний), с которым связано измерение: точность измерений задается именно этим постоянством.

Кроме этого, внешнего источника сигнала времени, немаловажна точность колебаний собственной колебательной системы: а это – вопросы проектирования и производства.

Для приборов, предназначенных для показания текущего времени, введен параметр поправки показаний прибора:

U = Т1– Тпр,

в которой Т1 – точное время; Тпр – показания прибора. Это измерение называют суточным ходом прибора.

w = U2 – U1,

для разных часов 180 > w > 10-7c, где U1, U2 – поправки, соответствующие началу первых и следующих суток.

Но суточный ход может отклоняться от правильного (отстать или спешить) или зависеть от вариации (от специфических свойств системы измерения времени (часы: кварцевые, маятниковые, карманные, наручные и прочие)). У каждого прибора имеется своя специфика, следовательно, свой суточный ход.

Для учета роли случайных факторов в отклонении суточного хода l пользуются формулой:

Lk = wkwср

W1 + W 2 + … + Wn

где 

 —средний суточный ход за n – суток; Ik – отклонение суточного хода за К-ные сутки.

Если w < 0 – часы спешат; w > 0 – часы отстают.

43. Приборы времени специального назначения

Для оперирования в быту и решения технических вопросов параметры U, w оказываются достаточными. Но там, где требуется наибольшая точность (астрономия, авиация, ВМФ, мореходство и др.) пользуются и другими параметрами.

В их основе – вариация.

V = w2– w1,

где w2, w1 – суточные ходы для следующих одни за другими суток; V – отклонение.

Ik = wk – wcp

где Ik – отклонения суточного хода за К-ые сутки; К = 1, 2,..., n; wcp – средний суточный ход за n суток.


Поправка U определяется по эталонным часам: без этого параметра рассчитать величины w, Ik невозможно.

На точность часов также влияет температура среды, которая характеризуется коэффициентом С; из-за этого явления возникает вторичная ошибка S.

Коэффициент С и его последствие – ошибка S – вычисляются по формулам:


В этих формулах цифры в индексах показывают сутки, для которых определены коды приборов.

Коэффициент температурного расширения зависит от технических свойств материала, от самой конструкции прибора и находится в границах

0,0005 ≤ C ≤0,5,

измеряется в с/град.

Следующая характеристика приборов времени – это барометрический коэффициент.


где w1, w2 – суточные ходы часов при соответствующих давлениях p1, p2.

Обычно 0,01 < К < 0,25 (с) на изменение давлений 1 мм рт. ст.

Причина в том, что как выше было отмечено, для работы приборов времени источником первичного толчка служит внешний сигнал: колебательные системы этого источника и своя собственная, определяют разрешительную способность прибора.

44. Приборы для измерения параметров движения

Рассмотрим такие параметры движения, как скорость, ускорение, угловые скорость и ускорение.

Для измерения скорости поступательного перемещения достаточно знать длины пути и времени. Тогда средняя скорость:


где ΔS – длина пути; Δt – промежуток времени.

Погрешность измерений, само собой разумеется, складывается из погрешностей измерений перемещений и времени


Измерение ускорения при поступательном перемещении измеряется точно так же:


Погрешность измерения ускорений также определяется погрешностями, допущенными при измерении величины перемещения и времени, затраченного на это перемещение.

Для измерения скорости перемещения поступательного движения часто пользуются приборами, которые преобразуют угловую скорость в линейную.

Сперва разберемся с угловой скоростью: это измерение угла поворота х за время Δt; эту величину называют средней угловой скоростью.


Если взять производную по времени, то получим угловое ускорение.

Для измерения линейной скорости применяются различные приборы с электрическими датчиками. Наиболее надежными из них являются приборы с индукционными датчиками: чувствительность – 0,07 мА/мм; погрешность – 12 мм при при 1 см/с.

Для измерения угловых скоростей применяются различные тахометры: механические, гидравлические, магнитные, электрические (обоих типов тока), импульсные и др.

Для измерения линейных ускорений при поступательном движении применяют акселерометры; наибольшей точностью из них обладают те, у которых имеются индуктивные датчики.

Для измерения угловых ускорений используют инерционные приборы с упругим стержнем, с инерционным диском и пружиной.

Перемещения в виде смещений и все другие параметры движения имеют место также при вибрации. Измеряются также частота и амплитуда вибраций, а также фаза, с этой целью применяются виброметры.

45. Измерение сил, моментов и напряжения

Общие методы измерения этих величин следующие.

1. Измерение проводится непосредственно путем обеспечения прямого контакта прибора с измеряемой величиной.