Основным, т. е. наиболее распространенным прибором для измерения давления является манометр: он имеет много разновидностей, вплоть до работающих на разности давлений.
Единицы измерения давления: как правило, оно измеряется в 1 кг/см2.
Однако основной единицей является Н/м2.
Между ними существуют следующие соответствия:
1) 1 мм вод. ст. = 9,8 Па;
2) 1 мм рт. ст. = 133,3 Па;
3) 1 атм = 760 мм рт. ст.
Для измерения очень сильных давлений пользуются килобарами (кбар), 1 кбар = 1000 атм. Формула для относительной погрешности.
50. Причины начальных погрешностей
Начальные погрешности в измерение могут вноситься по следующим причинам.
1.Удельный вес:
1) степень однородности среды нарушена вследствие нахождения в ней примесей (в том числе и растворимых газов; такие жидкостные среды в гидравлике называются вязкими жидкостями. Из-за нарушения этой вязкости и изменяется удельный вес рабочей жидкости);
2) может измениться ускорение силы тяжести: оно не всегда равно 9,8 Н, например, на уровне моря, где напор на поверхности H = 0, ускорение g = 6,65. С учетом этого измерения g, относительная погрешность, вносимая в измерение давления, выражается формулой:
где φ – значение географической широты. К изменению плотности приводит изменение не только вязкости, но и температуры, а это требует изменения длины самой шкалы для отсчета высоты столба. Изменение температуры на величину Δt вызывает температурную погрешность.
где β – коэффициент температурного расширения по объему; xm, хш – то же самое, но для линейного расширения узлов прибора (трубы и шкалы).
2. Высоты столбца:
1) погрешность введена при изготовлении шкалы, принято показания погрешности считать на ±0,5 мм; при использовании оптических устройств удается снизить эту погрешность до ±0,01 мм и даже больше; 2) изменение силы поверхностного натяжения также вносит погрешности, поскольку, по законам гидравлики, смачивается поверхность трубки и подъем жидкости увеличивается. Но в зависимости от этой силы, жидкость может не подниматься.
Уменьшение диаметра до величины <4мм тоже вносит погрешность.
3. Положение манометра.
Если отклонение трубки от вертикали составит угол X, то погрешность увеличивается на:
если угол очень небольшой, то согласно законам тригонометрии:
Если манометр изготовлен в 2-трубном исполнении (У-образный), то:
где h1, h2 – уровни жидкостей в соответствующих трубках.
51. Разновидности манометров
Жидкостные манометры: они не позволяют измерять значительных давлений: максимальные показания манометра зависят от самих линейных параметров манометра.
Особенностью этого манометра является то, что середина змееобразной трубки, которая получается после обьединения несколькиходнотрубных манометров У-образной формы, заполняется более легкой жидкостью, чем в рабочих концах.
При определении значений давления показания всех однотрубных или чашечных соединяются в одно.
ρ = γh1 + (γ – γ1)(h2 + h3 + ... + ...hn)
Погрешность, в основном, вносится в измеряемое значение ρ с параметрами γ и h.
Следовательно, нижняя граница измерений задается ценой деления шкалы, например, манометра. Измерения можно и нужно проводить до тех пор, пока величина погрешности не сопоставима, точнее, меньше либо равно цене деления.
Для получения более точной высоты столба, пользуются оптическими фото– и электронными следящими системами.
Применение металлических труб в этих случаях имеет свои преимущества: можно применять индуктивные следящие системы. При изменении положения манометра по вертикали увеличивается погрешность: но это происходит при х < 15°С.
Точность при наклонных трубках больше при x > 15°C. Более того, повышается чувствительность прибора
(в этом случае, его называют микроманометром):
где ρ – измеряемое давление; х – перемещение уровня жидкости в трубке.
Чувствительность может быть повышена еще значительнее, если воспользоваться двухжидкостным манометром: в манометре У-образная трубка переходит в концах в чашечки и заполнена разными жидкостями, близкими по удельному весу.
Для такого манометра, чувствительность
где – f, F – площади сечений и расширительных камер (чашек).
Среди наиболее распространенных манометров следует выделить следующие типы манометров: поршневые, пружинные, у которых, в свою очередь, целый ряд разновидностей.
Для измерения давления в газах пользуются их свойствами, связанными с плотностью с, поскольку ρ ~ ρ.
Такие манометры называют компрессионными.
52. Средства измерения гидравлических параметров жидкости
В зависимости от принципа действия, приборов для измерения гидравлических параметров можно выделить много. В качестве работы в них применяются принципы, начиная от перепада давлений до самых современных, например, ядерно-магнитного резонанса (ЯМР).
Наиболее популярны следующие приборы.
Приборы с принципом работы на перепаде давления.
Перепад (разность) давлений измеряется дифференциальным манометром, который называют дифманометром-расходомером.
Перепад давлений можно рассчитать по формулам:
где x – коэффициент расхода сужающего устройства; E – поправочный множитель на расширение измеряемой среды (для жидкостной среды E = 1); F – площадь отверстия сужающего устройства; γ – удельный вес измеряемой среды в рабочем процессе; g – ускорение свободного падения; Δρ= ρ1 – ρ2 – перепад давления в сужающем устройстве.
На практике применяют упрощенные виды:
в этих формулах: d – диаметр сужающего отверстия, мм; Δρ – искомый перепад давлений, кг/м2; γ – удельный вес вещества, кг/ч.
Если выразить диаметр через внутренний диаметр D трубопровода:
где m – модуль сужающего устройства, то:
Часто в вышеприведенных формулах удельный вес γ заменяют на плотность среды ρ, с учетом того, что единицы измерения заменяемых γ и ρ те же – кг/м3.
Метод измерений гидравлических параметров на перепаде давлений – самый распространенный из-за ряда достоинств: универсальность, широкая номенклатура сред, большой диапазон измерения температуры и многие другие.
53. Ядерно-магнитный резонанс
Корнеизвлекающие устройства могут быть как механическими, так и электронными, работающие на принципе ЯМР.
Если расходомер работает на перепаде давлений, то датчиком искомого давления является поплавок, который помещен в поток измеряемой среды: на поплавок снизу действует выталкивающая его сила и открывает проходное отверстие. В результате устанавливается перепад давлений. Поскольку этот перепад давлений не зависит от самого расхода, то его перемещение принимается за меру расхода.
Такие расходомеры называют ротаметрами.
Существуют еще электромагнитные, ультразвуковые, ионизационные, тепловые, массовые и другие виды расходомеров, работающие по разным принципам. Среди них особо следует выделить расходомеры с ядерно-магнитным резонансом: малая инерционность, отсутствие других устройств в трубопроводе, линейность шкалы, широкий диапазон (20: 1) измерений.
Однако ядерно-магнитный резонанс требует наличия сильного магнитного поля. Поэтому их невозможно применять для измерения расходов в трубопроводах с малым диапазоном. С этой точки зрения их можно относить к той же группе, что и дифманометры – расходомеры.
Поверх всех расходометров, проводят относительные погрешности, сравнивая и настраивая их с эталонными.
где δ ≤ 0,1–1; V – измерительный объем жидкости; V0 – объем жидкости, соответствующее одному обороту стрелки; h – количество V0 в объеме V: столько же движется стрелка V0, отсчитывая Q – количество расхода расходометров; q – потери расхода.
Работа с этими расходомерами требует установки предварительного фильтра.
Из-за разных динамических вязкостей μ1 и μ2 жидкостей, их погрешности по измерению объема δ1 и δ2, связаны между собой как:
где C – постоянная счетчика; Δρ – перепад давления, где
все параметры в скобке безразмерны; d, G – диаметр и вес рабочего органа счетчика; υ– кинематическая вязкость жидкости; Cp – теплоемкость жидкости; λ – теплопроводность жидкости.
54. Проектирование систем контроля и автоматического регулирования
Системы контроля и автоматического регулирования, конечным результатом которых являются сегодня орбитальные космические станции, межпланетные орбитальные станции, годами находящиеся на расстоянии сотни тысяч километров, являются высшим полетом современной инженерной мысли. Все это всего лишь каких-то 40–50 лет назад было мечтой всего человечества. Чтобы реализовать эти достижения, пришлось разработать, спроектировать более сложные средства, используя уже имеющиеся. В нашей последней заключительной лекции попробуем разобраться с вопросами проектирования средств автоматического регулирования и контроля. Из выше изложенного уже ясно, что основной задачей проектирования является:
1) разработка схемы;
2) обеспечение выбора аппаратуры для технологического контроля при производстве;
3) оформление принятых решений в виде технической документации, соответствующей ГОСТ.
В задачу проектирования входят вопросы, которые должны обеспечить проектные материалы; выяснить, каким методом произвести монтаж САР и контроля промышленным способом; каков ожидаемый эффект от выбранного способа выполнения заказа.
Если за советом и примером обращаться к природе, то увидим: жизнеспособны и долговечны только те материальные, в том числе биологические, системы, которые расходуют наименьшее количество энергии. Другими словами, чем менее энергоемка система, тем она более долговечна и живуча.