ммарная масса которых составляет всего лишь около одной тысячной доли от массы Земли, все остальное разметало по космосу. Хотя уже и сейчас, как пишут в газетах, мы вполне способны много раз уничтожить самих себя.
Но у нас есть и другой пример. К нам прилетают НЛО — посланники далеких цивилизаций. В статье в «Технике-молодежи» № 10 за 1991 год я показал, что не существует принципиальных препятствий для межзвездных перелетов. Мы можем перемещаться в пространстве с громадными скоростями и огромными ускорениями без разрушения организмов, и энергия для всего этого есть в любой точке пространства. Каждый из пилотов НЛО, каждый обладатель этой энергии может безусловно уничтожить всех на своей планете и даже на соседних. Но они к нам прилетают, значит, они живут и никого не уничтожают, а мирно и дружно пользуются тем, что дает природа. Конечно, они давно решили все свои материальные и социальные проблемы, иначе не может быть. И тем самым они подают нам пример, наши старшие гуманные братья по разуму. Будем же достойны этого!
Часть 3. Записки математика-прикладника
Посвящается математикам-прикладникам и математикам-теоретикам.
1. Зачем нужна математика?
В нашем городе Жуковском существует филиал МФТИ — Московского физико-технического института, собственно, это только один факультет — ФАЛТ — факультет аэролетательной техники, сам же институт, теперь, конечно, Университет, находится в городе Долгопрудный тоже под Москвой, но с другой стороны. Поскольку я много лет проработал в НИИ авиационного оборудования, ранее — Филиале ЛИИ и к нам приходили молодые специалисты из ФАЛТа МФТИ, то у меня была возможность проанализировать эту продукцию.
Несмотря на название — физико-технический, можно утверждать, что к физике эти ребята имеют отношение лишь в части запоминания того, что в физике успели сделать разнообразные великие предки, потому что никто из моих знакомых физтеховцев никакой новой физической задачи ни поставить, ни решить не мог, а уж о создании новых приборов и речи не могло идти. То же касается и техники. Зато все они были великолепными математиками и особенно хорошими программистами. К физике они относились как к нечто Богом данному, а от техники шарахались как черт от ладана. Но к собственным персонам они относились с большим уважением, полагая остальных за специалистов низшего сорта. Результат всего этого был печален: многие из них так себя и не реализовали, хотя некоторые, как я уже писал, стали директорами банков, правда, быстро разорившихся.
Поскольку развитием собственно математики мы не занимались, то для нас математика всегда имела прикладной характер: с ее помощью нужно было решать конкретные задачи, которые еще надо было найти, понять, а, поняв, сообразить, что мы хотим получить в результате, и только после этого можно было приспособить к делу робота-математика, т. е. выпускника МФТИ. В большинстве случаев это кончалось взаимным непониманием, поэтому обычно физтеховцы у нас не задерживались.
Уже тогда меня заинтересовал вопрос — для чего вообще нужна математика? Ответ, как мне кажется, очевиден: для решения прикладных задач, выявления разнообразных функциональных следствий, вытекающих из общей постановки задачи, представления об ее физической сущности и заданных конкретных, справедливых только для конкретного случая граничных и начальных условий. Если кто-нибудь добавит к этому что-нибудь еще, то автор, то есть я, будет им благодарен, поскольку сам больше ничего придумать не мог.
Конечно, сама по себе математика требует развития. Тут могут быть и находки, и изобретения, и новые методы. Как-то ночью, часа в три, я, когда никто не мешал из домашних, самостоятельно вывел интеграл Фурье. Помню, какой восторг и какое глубокое чувство удовлетворения охватили меня. Но все спали, и поделиться было не с кем. Но интеграл Фурье — штука прикладная, и он выведен не зря. А скажите-ка на милость, кому нужны все эти «неевклидовы геометрии», топологии пространства и прочие замысловатые штучки, которые, конечно, говорят о гениальности изобретателей, но больше не говорят ни о чем. Кому они сослужили пользу? Причем сами эти гении, между прочим, применяют обычные понятия, например в «пространстве, имеющем форму бутылки», фигурирует бутылка, как форма, существующая в обычном евклидовом пространстве!
Однако я надеюсь, что ошибаюсь, и математики устроят мне «the face об the table». Но, может быть, и наоборот.
Но уж если говорить о прикладном значении математики, то здесь тоже возникает множество вопросов. Любое уравнение, описывающее движение какого-нибудь тела, должно отталкиваться от начальных и граничных условий. Начальные условия говорят о состоянии движения тела в некоторый начальный момент времени и имеют целью отрешиться от предыстории этого движения. На самом деле, этот процесс начала движения самым жестким образом связан с его предысторией, поскольку ни один процесс не начинается с нуля, движение вообще нельзя создать, его можно только преобразовать из одной формы в другую. А это значит, что пренебрежение предыдущими процессами должно быть специально обосновано, но этого почти никогда не бывает. Сразу предполагается, что это не важно, хотя на самом деле заранее это никому не известно. То же и с граничными условиями. Все тела и все процессы связаны друг с другом в пространстве. Граничные условия нужны, чтобы отрешиться от второстепенных связей, но сам факт второстепенности должен быть тщательно проверен.
Этим тоже, как правило, мало кто занимается, а потом, когда становится уже очевидным, что произошли упущения, носящие принципиальный характер, хватаются за голову: столько сил и средств потратили, а все зря!
Здесь хорошим примером является баллистика, которая делится на внутреннюю, промежуточную и внешнюю. Внешняя баллистика изучает движения снаряда в воздухе, но начинается она с конца промежуточной баллистики. Промежуточная баллистика изучает движение снаряда в канале ствола с того момента, когда порох полностью сгорел. Сама же она начинается с окончания внутренней баллистики. А внутренняя баллистика изучает движение снаряда внутри канала ствола, когда еще не весь порох выгорел. Таким образом, внешняя баллистика начинается там, где кончается промежуточная баллистика, а промежуточная, где кончается внутренняя. Но внутренняя баллистика начинается с начала процесса сгорания пороха, и тут возникает множество проблем, например, какой формы должны быть пороховые «макароны», сколько и каких дырок в них должно быть, чтобы порох сгорал побыстрее. Но и это не начало. Началом является процесс детонации, потому что именно от него зависит, как поджечь порох, чтобы он сгорал побыстрее, чтобы пороховые газы толкали снаряд поинтенсивнее, чтобы он вылетел из ствола со скоростью побольше, летел побыстрее и, наконец, попал в цель, если, конечно, артиллеристы навели орудие правильно. А там уже пробил броню, а не отскочил от нее, и, наконец, покалечил тех, кто за броней сидит, что и является целью всех этих полезных процессов. Потому что иначе, те ребята, которые сидят за броней, которую вы собираетесь пробить, сделают с вами то же самое, если догадаются о ваших намерениях, и тоже с помощью внешней, промежуточной и внутренней баллистики.
Нужно всегда помнить, что математика, в принципе, это есть определенная логика, перерабатывающая то, что в нее вложено в качестве исходных данных, и надеяться, как это делают некоторые, на то, что из собственно математики можно выудить какие-то новые сведения о природе, ни в коем случае нельзя. Кроме того, к сожалению, современный математический аппарат не отражает причинно-следственных отношений в тех процессах, которые она с помощью функциональных зависимостей отражает. Примеров много. В качестве такового можно рассмотреть закон полного тока, связывающий напряженность магнитного поля H, созданного проводником с постоянным током i на расстоянии R от оси проводника:
Если пропустить через проводник ток, то вокруг него немедленно установится магнитное поле. А попробуйте-ка установить вокруг проводника постоянное магнитное поле от каких-нибудь других источников и получить в проводнике постоянный ток! А? Ничего не получается? То-то! Значит, ток — причина, а магнитное поле следствие, и никак иначе. А как это отражено в математическом выражении? Никак! А отсюда вытекают бо-ольшие следствия!
То же и с математической мельницей. Нет сомнения в том, что математический аппарат позволяет проследить многие процессы, например, динамические. Если известны структуры звеньев сложной системы и все их инерционные и временные параметры, а также нелинейности и виды воздействующих возмущений, то можно определить устойчивость системы и ее реакции на эти возмущения. Однако, если что-то окажется не так, то потом нужно будет вполне интуитивно добавлять в систему новые звенья или связи и что-то менять, руководствуясь накопленным опытом или просто методом «научного тыка». И даже если система самообучающаяся, все равно она всего лишь реализует ранее найденные закономерности, а не создает новые. Так что никакой «искусственный интеллект» здесь помочь не в силах, даже если его заводят в связи с недостачей естественного.
Если рассудить здраво, то математика есть модель, приближенно описывающая физическую модель явлений. А физическая модель отражает суть явления весьма частично, это всего лишь наши представления о сущности физического явления, не более. Так что математика — это второе приближение к реальности, и общая последовательность такова: сначала природа, потом — наши представления о ней, это физические модели, а потом уж и математическое описание, и выводы из этого описания. И если выводы из математического описания совпадут с реальностью, радуйтесь, что хоть что-то угадали. Но не воображайте, что теперь вы все знаете и что вся ваша цепочка верна, могут быть и наверняка существуют совершенно иные логические цепи, которые приведут к тому же результату.