[10], то есть условиям высказывания удовлетворить невозможно, они найдут это забавным. Еще у них в цене логические головоломки. Например, история о еврейской мамаше, подарившей два галстука своему зятю. Когда она встречает его в следующий раз и видит на нем один из подаренных галстуков, то спрашивает: «Разве другой тебе не понравился?»
Некоторые замечания фон Неймана несли в себе сокрушительную иронию, несмотря на то, что его сарказм имел абстрактную природу. Эд Кондон рассказывал мне в Боулдере, что как-то он сидел рядом с Джонни на лекции по физике в Принстоне. Лектор строил кривую по множеству экспериментально полученных точек, и, хотя они были сильно разбросаны, он все же показал, каким образом они лежат на кривой. Если верить Кондону, то фон Нейман прошептал: «Что ж, по крайней мере они лежат на одной плоскости».
Одни могут вспоминать истории и рассказывать их другим в подходящие моменты. Другие умеют придумывать их, находя аналогии между ситуациями или идеями. Третьи смеются и получают удовольствие от шуток других. Иногда я задаюсь вопросом, можно ли классифицировать типы юмора в зависимости от личности. Мои друзья и сотрудники Дж. Эверетт из Соединенных Штатов и Станислав Мазур из Польши — оба обладали очень специфичным чувством юмора, и при этом они имели похожий почерк и даже внешне походили друг на друга.
Фон Нейман предпочитал рассказывать истории, которые он уже где-то слышал, мне нравилось придумывать их самому. Моя жена говорит, что я как-то сказал ей: «Во мне есть остроумие, и это потрясающее качество.» Когда же она сказала мне, что я хвастун, то я тут же ответил: «Верно. У меня тьма недостатков, но скромность не позволяет мне упоминать о них!».
Помимо специфических шуток, математики используют и специфический язык. Например, употребляют слово «тривиальный». Они просто обожают это выражение, но что оно действительно означает? Легкий? Простой? Банальный? Мой друг Джанкарло Рота услышал как-то от одного своего коллеги, что тот не любит преподавать исчисление[11], потому что оно очень тривиально. Но так ли это? Исчисление, каким бы простым оно ни было, является одним из величайших творений человеческого ума, и его зачатки восходят еще к Архимеду. Его «придумали» Ньютон и Лейбниц и развили Эйлер, Лагранж и другие. Оно таит в себе некую красоту и значение, куда превышающее большее из того, что есть в нашей современной математике. Так что же «тривиально»? Уж, конечно, не великая теория множеств Кантора, которая, будучи технологически очень простой, несложной и незапутанной, концептуально очень глубока и замечательна.
Мне приходилось слышать, как математики осмеивали специальную теорию относительности, называя ее ничем иным, как технически тривиальным квадратным уравнением да несколькими следствиями. Но ведь это — одна из монументальных идей человеческой мысли. Так что есть тривиально? Простая арифметика? Да, для нас она, возможно, тривиальна, но так ли это для ученика третьего класса?
Давайте посмотрим, какие еще слова бытуют в обиходе математиков: возьмем, к примеру, прилагательное «непрерывный». Из одного этого слова рождается вся топология. Топологию можно рассматривать как большое сочинение, темой которого является это слово — «непрерывный» — во всех его обобщениях, применениях и разновидностях. Попытайтесь логически или комбинаторно определить наречие «даже» или «однако». Или возьмите какое-нибудь слово типа «ключ», обозначающее самый обыкновенный предмет. Однако куда как нелегко определить этот предмет квазиматематически. Слово «клубиться» обозначает движение, к примеру, дыма, при котором клубы дыма порождают друг друга. В природе оно почти столь же обыденно, как и движение волн, однако это слово может дать жизнь целой теории преобразований и новой гидродинамике. Как-то я даже пытался написать работу по математике трехмерного пространства, которая имитировала бы это слово.
Будь я помоложе лет на тридцать, обязательно попытался бы написать математический словарь, объясняющий происхождение математических выражений от общеупотребительных слов на манер философского словаря Вольтера.
Глава 6. Переход и кризис
Каждое лето с 1936 по 1939 год я на все три месяца возвращался в Польшу. Приехав в первый раз, всего лишь после нескольких месяцев пребывания в Америке я удивился тому, что в городе работают телефоны и есть электричество, ходят трамваи. Сам я был охвачен мыслью об абсолютном превосходстве Америки в технологиях, о ее уникальном «ноу-хау». Конечно, главную эмоциональную реакцию вызвало во мне воссоединение с семьей, друзьями и знакомыми улочками Львова, а затем последовало горячее желание вернуться к свободным и перспективным «открытым» условиям жизни в Америке. Наверное эти сложные чувства станут понятнее, если я добавлю, что в мае я считал дни и недели, оставшиеся до моего возвращения в Европу, а в Польше я уже через несколько недель начал нетерпеливо считать дни до своего возвращения в Америку.
Поскольку большинство математиков на лето оставалось во Львове, мои личные контакты с ними, а также наши собрания в кафе продолжались до самого начала Второй мировой войны. Как и раньше я работал с Банахом и Мазуром. Пару раз я навещал Банаха, когда тот уезжал на несколько дней в Сколе или окрестные деревни в Карпатских горах, в милях семидесяти к югу от Львова. Эти места я знал с детства. Банах работал там над одним из своих учебников, но всегда находил время, чтобы посидеть в харчевне, поговорить о математике и «остальной части вселенной», выражаясь фразой, столь милой сердцу фон Неймана. В последний раз я видел Банаха в июле 1939 года в Шотландском кафе. Мы обсуждали вероятность войны с Германией и вписали еще несколько задач в Шотландскую книгу.
Летом 1937 года Банах и Штейнгауз попросили меня пригласить фон Неймана приехать во Львов с лекцией. Он приехал из Будапешта и провел с нами несколько дней, за которые успел прочитать отличную лекцию и несколько раз побывать со мной в нашем кафе. Там фон Нейман написал несколько задач в Шотландской книге, и мы провели несколько приятных дискуссий с Банахом и еще несколькими математиками.
Я рассказал Банаху о выражении, которое Джонни употребил в нашей беседе в Принстоне перед тем, как сообщить мне о результате, полученном каким-то математиком, который не был евреем: «Die Goim haben den folgenen Satzbewiesen» (Следующую теорему уже доказали гои[12]). Банах, который был самым настоящим гоем, посчитал это самой забавной фразой из всех, что ему когда-либо доводилось слышать. Напрашивавшийся из нее вывод показался ему очаровательным — то, что смогли сделать гои, Джонни и я должны были сделать еще лучше. Джонни пришлась по вкусу эта шутка, хоть он и не выдумал ее сам, и мы пустили ее в ход.
Я показал Джонни город. У меня уже имелся некоторый опыт работы гидом для иностранных математиков. Когда я был всего лишь первокурсником, Куратовский, зная, что я говорю по-английски, поручил мне познакомить с городом американского тополога Эйреса. Еще мне приходилось сопровождать в экскурсиях по Львову Эдуарда Чеха, Г. Т. Уайберна и некоторых других приезжавших в Польшу ученых.
Львов вызвал у Джонни большой интерес и удивил его своим центром, который сохранил тот же вид, что и в девятнадцатом веке, и многочисленными памятниками пятнадцатого, шестнадцатого и семнадцатого столетий. В некоторых отношениях Венгрия и Польша все еще оставались полуфеодальными. В городе было много живописных местечек, где старые домики, наклонившись друг к другу, искривляли узкие, вымощенные булыжником улочки. В одном из переулков гетто в открытую проводились незаконные операции с валютой. В мясных лавках, расположенных на окраинах, беспрепятственно открывались взору ряды вывешенных туш. Несмотря на электрические трамвайные линии, по городу все еще ездили запряженные лошадьми экипажи. Такси встречались нечасто, и даже тогда, уже в конце тридцатых, можно было нанять «фиакр», запряженный парой лошадей. Кстати говоря, когда я в первый раз побывал в Нью-Йорке, то весьма удивился, увидев перед лучшими отелями на Пятой Авеню старые ветхие фиакры, каждый из которых был запряжен только лишь одной хилой лошаденкой.
Мы побывали в армянской церкви, украшенной фресками руки Яна Хенрика Розена, современного польского художника, живущего сейчас в Соединенных Штатах. Когда же мы зашли в русскую православную церковь, то нас обоих неимоверно потряс вид лежащего в полуоткрытом гробу трупа, который должны были похоронить по русскому обряду. Тогда я в первый раз в жизни увидел покойника.
Джонни также побывал и в нашем доме. Он познакомился с моими родителями — мамой, которой уже через год было суждено уйти из жизни, и отцом, который был наслышан о Джонни с моих слов. Я показал ему контору отца, расположенную в другой части нашего большого дома на улице Костюшко.
Кое-кого из нашей семьи Джонни уже знал. Моя тетя, вдова Майкла, брата моего отца, вышла замуж за венгерского финансиста Арпада Плеша. Фон Нейман знал Плешей. Брат Арпада был врачом Эйнштейна в Берлине. Арпад был баснословно богатым финансистом, но весьма противоречивым человеком. Довольно состоятельной была и моя тетя, замечательная женщина, предком которой был знаменитый пражский ученый пятнадцатого века Каро.
Когда, много лет спустя, я вместе с фон Карманом был в Израиле, в городе Сафед, старый православный гид-еврей показал мне могилу Каро на старом кладбище. Когда я сказал ему, что состою в родстве с Каро, он упал на колени — что, впрочем, стоило мне тройного размера чаевых. Плеши часто путешествовали и нередко жили в Париже. Я навестил их там во время своей поездки в 1934 году. Майкл Улам, мой дядя и первый муж моей тети, был похоронен в Монте-Карло; тетя, которой сейчас уже тоже нет в живых, похоронена там же, в причудливом мраморном мавзолее на католическом кладбищ