Приключения математика — страница 39 из 63

Когда приезжали фон Нейманы, мы устраивали поездки в Санта-Фе и его окрестности, частенько обедая в маленьких местных латиноамериканских ресторанах.

Каждый раз, когда на пути к Санта-Фе мы проезжали мимо местечка Тотави (от которого, фактически, осталось одно лишь название), я стремительно переходил на латынь и начинал перечислять: «Тото, тотаре, тотави, тотатит», а он обыкновенно добавлял какую-нибудь форму из будущего времени. Это была одна из наших несерьезных словесных игр. Другой ребяческой забавой было читать наоборот дорожные знаки. В Мехико Джонни всегда читал «pots» вместо «stop» или «otla» вместо «alto» в Мексике.

Еще одной игрой, в которую любили играть в дороге Джонни и Клари, была игра «Блэк Меза». Блэк Меза — индейский межевой знак в долине Рио Гранде, который при спуске с Лос-Анджелесской возвышенности то появляется, то исчезает из вида. Тот, кто замечал его первым, привлекал внимание другого восклицанием: «Блэк Меза!» и зарабатывал очко. Игра эта продолжалась во время каждой поездки, и счет очкам велся так же, как в теннисных играх и сетах. Казалось, они никогда не забывали, каков текущий счет. Джонни всегда нравились эти небольшие словесные отвлечения от серьезного сосредоточенного размышления.

В первые послевоенные годы КАЭ (Комиссия по атомной энергии), еще не успев завершить строительство новых и более комфортабельных жилых домов, начала строить постоянное здание под свои кабинеты и кабинеты для представителей служб безопасности. Джонни заметил, что во все времена это было целиком и полностью в духе традиций всех правительственных администраций, и решил назвать здание «Еl Palacio de Securita». Это была весьма «горючая» смесь испанского, итальянского и латыни. Я, не отставая от него, тут же придумал название новой церкви: «San Giovanni delle Bombe».

Примерно в то же время мы придумали «nebech-индекс». От Джонни я услышал один классический анекдот о маленьком мальчике, который вернулся домой и сообщил своему отцу, что провалился на выпускных экзаменах. Дело было в Будапеште во времена, предшествующие Первой мировой войне. Отец спросил его: «Почему? Что случилось?» Мальчик ответил: «Нам нужно было написать эссе. Учитель дал тему: настоящее, прошлое и будущее Австро-Венгерской империи». «Ну и что ты написал?» — спросил отец. Мальчик ответил: «Я написал: «Nebech, nebech, nebech»». «Все правильно, — сказал ему отец, — почему же тебе поставили двойку?» «Я написал «nebech» с двумя Ь», — последовал ответ.

Тогда у меня родилась идея ввести nebech-индекс предложения, обозначающий сколько раз слово «nebech» можно было бы ввести в данное предложение так, чтобы оно не нарушило его стройности, и в то же время придало значению предложения разные оттенки в зависимости от того, к какому слову оно относится. Например, можно утверждать, что самым совершенным предложением с nebech-индексом, равным трем, является утверждение Декарта: «Cogito, ergo sum»[23]. Можно сказать: «Cogito nebech, ergo sum». Или: «Cogito, ergo nebech sum». Или: «Cogito, ergo sum nebech». К сожалению, этот оригинальный пример пришел мне в голову уже после смерти Джонни. Очень часто мы использовали этот индекс во время математических дискуссий, собраний по физике и разговоров о политике. Обычно мы легонько подталкивали друг друга и произносили шепотом: «Nebech-два» для какого-нибудь утверждения, получая от этого большое удовольствие.

Теперь, если читатель уже достаточно заинтригован, я поясню, что «nebech» — это непереводимое с идиш выражение, сочетание соболезнования, драмы, презрения и насмешки.

Чтобы почувствовать аромат этого слова, попытайтесь представить рассказ о Вильгельме Телле, поставленный в еврейской школе на идиш. В той сцене, где Вильгельм Телль поджидает в засаде Гесслера, которого он хочет застрелить, актер говорит на идиш: «По этой улице должен пройти Nebech». Очевидно, что Гесслер это и есть Nebech, поскольку он станет жертвой Вильгельма Телля. Но если бы слово «nebech» стояло перед словом «улица», ударение падало бы на него, указывая на то, что это была плохая улица. Чтобы должным образом оценить это, необходим не один год подобной практики.

Спустя несколько месяцев после моего возвращения в Лос-Аламос я пригласил Эверетта, моего старого друга и соратника из Мэдисона, присоединиться ко мне в работе в лаборатории. Он пробыл в Мэдисоне всю войну; из нашей переписки я знал, что он начал уставать от преподавания, и потому я предложил ему приехать и возобновить наше сотрудничество. Эверетт был первым и единственным, кто приехал в Лос-Аламос для официального собеседования на автобусе. Руководители проекта всегда оплачивали купе поезда или стоимость авиабилета, и его скромность вызвала настоящую сенсацию. Вскоре после прохождения собеседования, он вместе с женой и сыном переехал в Лос-Аламос, где продолжилось наше сотрудничество в области теории вероятностей и других разделах математики, а затем началась наша совместная работа над водородной бомбой.

Эверетт уже в Мэдисоне был довольно застенчивым и скромным человеком, однако со временем он все больше и больше становился отшельником. Хотя он всегда охотно общался с людьми, в Лос-Аламосе его по первости приходилось уговаривать прийти к нам домой, на что он соглашался только в том случае, если ему было дано торжественное обещание того, что в то же самое время там больше никого не будет. Позже он и вовсе перестал к нам приходить, и теперь единственное место, где его можно увидеть — это его маленький кабинет, в котором нет даже окна, отдельная кабинка замечательной библиотеки лаборатории.

Одним из установившихся в лаборатории правил была подготовка ежемесячного отчета о проделанной работе. Каждый работник должен был в краткой форме сообщить о своей работе и исследовательской деятельности. Как я уже говорил, Эверетт обладал отличным чувством юмора, и в один из месяцев, когда мы были сильно заняты своей работой, он предоставил отчет, в котором были только следующие слова: «Огромная работа была проделана по теме из отчета о проделанной работе за прошлый месяц».

Два семинарских доклада, с которыми я выступил вскоре после своего возвращения, оказались не лишены хороших, лучше даже сказать удачных идей, которые впоследствии получили успешное развитие. Первый был по теме, которая позже получила название метода Монте-Карло, второй — о нескольких новых возможных методах гидродинамических расчетов. Оба эти доклада послужили основой для очень важной работы в области теории вероятностей и механики сплошных сред.

Гидродинамические расчеты использовались в таких задачах, где не приходилось рассчитывать на какую-то точную формулу или четкое решение в традициях классического анализа. Их можно было бы охарактеризовать как расчеты «грубой силы», оперирующие фиктивными «частицами», которые в действительности были не элементами жидкости, а абстрактными точками. Вместо того чтобы рассматривать конкретные материальные точки жидкости, для общего описания жидкости было целесообразно использовать коэффициенты бесконечных рядов, описывающих движение среды в виде абстрактных точек. Само движение описывается в целом несколькими бесконечными рядами, в которых каждый последующий член менее существенен, чем предыдущий. Рассмотрев только несколько самых первых членов, уже можно было заменить дифференциальные уравнения в частных производных с несколькими переменными (или интегральные уравнения с несколькими переменными) на обыкновенные или какие-либо другие совершенно отличные уравнения для конечного числа абстрактных «частиц». Через несколько лет Фрэнсис Харлоу углубил, развил и расширил возможности применения этого подхода к расчету движений жидкостей или сжимаемых газов благодаря своей работе в Лос-Аламосе. Сейчас такие расчеты широко используются. Возможности этих методов еще не исчерпали себя; они могли бы сыграть немаловажную роль при расчетах движения воздуха, прогнозах погоды, в проблемах астрофизики, физики плазмы и других областей.

Второе сообщение касалось вероятностных расчетов для класса физических проблем. Идея, названная впоследствии методом Монте-Карло, возникла у меня, когда во время своей болезни я играл в пасьянс. Как я заметил, получить представление о вероятности успешного исхода в пасьянс (к примеру, в игре «Канфилд» или какой-нибудь другой игре, в которой мастерство игрока не играет роли) можно гораздо более практичным способом, если, раскладывая карты или экспериментируя с процессом, отмечать долю успешных результатов, а не пытаться просчитывать все комбинаторные варианты, число которых возрастает экспоненциально и которых бывает такое несметное множество, что оценить их всех просто не представляется возможным за исключением самых простых случаев. Последнее вызывает неприятное удивление, в каком-то смысле даже унижает умственные способности человека, заставляя почувствовать, насколько узки границы рационального и традиционного мышления. Как бы то ни было, в достаточно сложных задачах фактическая выборка оказывается эффективнее, чем рассмотрение всех цепочек возможностей.

Я подумал, что все это может быть одинаково справедливо для всех процессов с ветвящейся схемой событий, в том числе в получении и последующем размножении нейтронов в некоторых материалах, содержащих уран или какие-либо другие расщепляемые элементы. На каждой стадии процесса существует множество возможностей, определяющих судьбу нейтрона. Он может расщепиться под каким-нибудь углом, изменить свою скорость, поглотиться, породить другие нейтроны, вызвав деление намеченных ядер, и так далее. Сами по себе элементарные вероятности каждой из таких возможностей известны, отчасти благодаря знанию поперечных сечений. Проблема состоит в том, что необходимо знать, какая последовательность, какая ветвь из сотен тысяч или сотен миллионов будет в действительности иметь место. Можно написать дифференциальные уравнения или интегально-дифференциальные уравнения для «ожидаемых величин», однако решить их или получить хотя бы приближенные представления о свойствах решения — совершенно иное дело.