льтатов, свидетельствующих о том, что наша интуиция, благодаря которой мы понимаем бесконечность, не обладает полнотой. Они позволяют раскрыть таинственные области нашей интуиции для понимания разных концепций бесконечности. Это, в свою очередь, оказывает косвенное влияние на изменение философии математического фундамента, показывая, что математика — это вовсе не законченный предмет, основанный на неизменных, уникальным образом подобранных законах, как было принято считать раньше, а генетически развивающаяся наука. Эту точку зрения еще не приняли сознательно, а ведь она указывает путь к иным перспективам. Математики изучают бесконечность воистину плодотворно, так что можно ли знать, как изменится наше отношение к этому понятию за следующие пятьдесят лет?
Конечно, что-то появится — если не аксиомы в настоящем смысле этого слова, то правила или договоренности между математиками, которые допустят новые постулаты или, назовем их лучше, формулированными пожеланиями, выражающими абсолютную свободу мысли, свободу конструкции, когда есть неразрешимые утверждения в предпочтение верным или ложным допущениям. Некоторые утверждения могут в самом деле быть неразрешимо неразрешенными. Это должно представлять огромный философский интерес.
Интерес к фундаментальным основам математики в какой-то степени философский, однако в конечном итоге он распространяется на всю математику, как и теория множеств. Однако если выражение «фундаментальные основы» — термин неудачный, в настоящее время это всего лишь еще один математический предмет, но, безусловно, фундаментальный.
Огромная дихотомия в происхождении и вдохновении математической мысли — которую стимулируют с одной стороны влияние внешней реальности, материального мира, а с другой стороны воздействие развивающегося процесса психологии, очень вероятно, что человеческого мозга — имеет небольшой и особый гомоморфический образ в настоящем и будущем применении электронных компьютеров.
Даже самый идеалистический взгляд на математику как на «чистое» создание единственно человеческого ума должен согласовываться с тем фактом, что выбор определений и аксиом геометрии — а фактически, и большинства математических концепций — это результат впечатлений, полученных посредством наших чувств от внешних раздражителей и, что неотъемлемо, от наблюдений и экспериментов во «внешнем мире». Теория вероятностей, например, появилась как результат развития нескольких вопросов, связанных с азартными играми. Сегодня вычислительные машины, предназначенные для решения специальных задач математики, позволяют надеяться на очень мощное увеличение масштаба Gedanken экспериментов[38], идеализацию опыта и наших более абстрактных схем мышления. Судя по всему, экспериментирование с моделями игр, в которых участвует самоорганизованная живая материя через посредничество химических реакций, протекающих в живых организмах, приведет к новым абстрактным математическим схемам. Новые математические структуры могли бы возникнуть и в результате нового изучения математики эволюционирующих моделей и возможности экспериментального изучения на вычислительных машинах процесса конкуренции или состязаний между геометрическими конфигурациями, имитирующими борьбу за выживание. Здесь можно было бы применить выражение вроде «payzonomy» к комбинаторике конкурирующих реакций и «auxology» к еще только развивающейся теории роста самоорганизации, которая в конечном итоге включает и растущее дерево самой математики[39].
До сих пор для отображения математических свойств геометрической эволюции предлагались только очень простые и недоработанные математические схемы (мои собственные незамысловатые модели представлены в недавно вышедшей книге «Теория клеточных автоматов» («А Theory of Cellular Automata») под редакцией Артура Беркса, изданной издательским домом Иллинойского университета).
Особенно оригинальный набор правил придумал английский математик Джон Конвей, специалист по теории чисел. Его «Игра Жизни» является примером развлечения или игры, очень похожей на ранние задачи с элементами игры в карты или кости, которая в итоге подвела к современному строению теории вероятностей и, возможно, подведет к новой большой теории, описывающей «процессы», которые изучал в своей философии Альфред Норт Уайтхед.
Использование компьютеров не только удобно, но и абсолютно необходимо в этих экспериментах, которые предполагают слежение за играми или состязаниями на протяжении огромного количества ходов или этапов. Я считаю, что опыт, приобретенный в результате наблюдения за поведением таких процессов, окажет фундаментальное влияние на все, что способно обобщить или даже заменить наблюдаемое сегодня в математике исключительное следование формальному аксиоматическому методу.
Вышеупомянутые результаты, полученные не так давно Полем Коэном и другими учеными — Петром Новиковым, Хао Вангом, Юрием Матиясевичем — и характеризующиеся независимостью от традиционной системы аксиом некоторых наиболее фундаментальных математических утверждений, говорят о новой роли прагматических подходов. Работа с автоматами поможет определить, можно ли решить задачу с помощью существующих средств.
Давайте рассмотрим «маленькую» специальную задачу с трехмерным пространством, чтобы проиллюстрировать то, о чем мы рассуждаем. В пространстве имеется замкнутая кривая и твердое тело данной формы. Задача состоит в том, чтобы протолкнуть данное дело через данную кривую. В математике нет четких критериев, которые позволили бы судить о том, осуществимо это или нет. Тело приходится вращать, покачивать, проталкивать и «пробовать», чтобы узнать можно ли это сделать. Аналогичную задачу можно рассматривать и при большем числе измерений, к примеру пяти. Идея заключается в том, чтобы занести ее в компьютер и пробовать различные возможности движения. Возможно, после очень большого числа таких попыток у исследователя этой задачи разовьется ощущение свободного маневрирования и в пространстве с большим числом измерений, а также новая почти тактильная интуиция. Это, конечно, частный, незначительный и неважный пример, однако я считаю, что мы могли бы развить в себе новые свойства воображения, благодаря подходящему экспериментированию вкупе с новыми средствами, особенно электронными компьютерами, реализуя на них и наблюдая с их помощью различные процессы роста и эволюционное развитие.
Я думаю, что влияние электронных компьютеров существенно распространится и на чистую математику, так же, как это уже произошло с математическими науками, главным образом с физикой, астрономией и химией.
Этот основанный на предположениях обзор аспектов будущего математики уносит нас далеко от фон Неймана, его современников и той роли, что они сыграли в эволюции науки четверть века назад. Быстрые темпы роста организованной умственной деятельности человека, несомненно, ускорили появление компьютеров, что предвещает качественные изменения в нашем образе жизни и мышления. Как гласит одно из забавных замечаний Нильса Бора, «предсказывать очень трудно, особенно будущее». Но я думаю, что математика в значительной степени изменит свои аспекты. Возможно, произойдет нечто радикальное, появится совершенно иная точка зрения на сам аксиоматический метод. На смену кропотливому изучению специальных теорем, которые исчисляются миллионами, и мышлению по правилам оперирования раз и навсегда установленными символами придет, быть может, математика, в которой будет все больше и больше задач, или «пожеланий», или программ более общего характера. Не будет большого дополнительного количества специальных пространств, определений специальных многообразий, специальных отображений одного или другого, хотя немногие из них все же выживут: «apparent rari nantes in gurgite vasto»[40], не будет новых групп отдельных теорем, а вместо них появятся общие схемы и очертания более обширных теорий, более огромных областей, тогда как текущее получение доказательств теорем будет оставлено студентам или даже машинам. Возможно, это станет сравнимо с импрессионистской живописью, которой противопоставляется вымученное, передающее каждую мелочь рисование на заре веков. Это могла бы быть более живая и изменяющаяся картина, причем не только в отношении выбора определений, но и самих правил игры, великой игры, правила которой не меняли со времен античности до настоящего момента.
Но даже если правила еще не изменились, изменился, уже за то время, что живу я, размах математики. В девятнадцатом веке все приложения математики распространялись только на физику, астрономию, химию, механику, машиностроение и другие грани технологии. С не таких уж давних пор математика участвует в формулировании фундаментальных положений других наук, а так называемая математическая физика в действительности есть теория всей физики, затрагивающая самые абстрактные ее разделы, такие как квантовая теория, самый необычный четырехмерный континуум пространства-времени. Все это особенно характерно для двадцатого столетия. За короткий промежуток от шестидесяти до ста лет математические идеи стали применяться повсеместно и в огромных количествах. Это сопровождалось, можно сказать, взрыву подобным созданием новых больших и малых математических объектов и тенденцией «добивать все окончательно» путем столь широкого распространения и крохоборнических исследований малейших, почти что талмудистских деталей.
Когда я несколько лет назад выступал на праздновании двадцать пятой годовщины создания фон-неймановского компьютера в Принстоне, я вдруг принялся мысленно прикидывать, сколько теорем публикуется ежегодно в математических журналах. (Теоремой считается утверждение, которое публикуется в авторитетном математическом журнале и имеет наименование «теорема».) Я быстро произвел в уме подсчет, удивляясь тому, что я могу заниматься этим и одновременно говорить о чем-то совершенно другом, и получил результатом около ста тысяч теорем в год. Быстро переменив тему, я упомянул об этом в своей речи, и слушатели разинули рты от изумления. Читателю, возможно, будет интересно узнать, что на следующий день ко мне пришли два молодых математика, которые слыша