Приключения математика — страница 59 из 63

Когда в экспериментальной физике исследователи вместе работают на различных этапах проведения эксперимента, это довольно естественно. К настоящему моменту любой эксперимент в действительности представляет из себя класс технических проектов, особенно проектов огромных машин, для создания и работы над которыми требуются сотни инженеров и специалистов.

Такая картина существует в теоретической физике, правда, не очень явно, и, как ни странно, в математике тоже. Мы уже знаем, что творческое усилие в математике требует напряженной сосредоточенности и постоянного, вглубь направленного и часами напролет длящегося размышления, что часто в нем участвуют два человека, которые в процессе сотрудничества просто смотрят друг на друга и время от времени делают несколько замечаний. Сейчас это настолько распространено, что даже в самых сложных для понимания математических вопросах два или более человека работают вместе, пытаясь найти доказательство. Многие работы сейчас пишутся двумя, иногда тремя и более авторами. Обмен догадками, предложение пробных подходов помогают получить частичные результаты в процессе исследования. Ведь гораздо легче разговаривать, чем записывать каждую мысль. Здесь, кстати, наблюдается определенная аналогия с анализом игры в шахматы.

Возможно в будущем большие группы работающих вместе математиков будут получать важные, простые и изящные результаты. Несколько результатов уже было получено таким образом за последние годы. Например, получение решений (не одновременное, конечно, а последовательное) одной из задач Гильберта о существовании алгоритмов решения диофантовых уравнений несколькими учеными в этой стране и, в самом конце, молодым русским ученым Юрием Матиясевичем, сделавшим завершающий этап. Старую задачу Банаха о гомеоморфизме его пространств решили несколько математиков из Соединенных Штатов и Польши, работавших независимо, но информировавших друг друга о текущих результатах. Они, так сказать, могли взбираться друг другу на плечи.

Выражение «критическая масса» как метафора, обозначающая, каким должен быть минимальный требуемый размер группы ученых для того, чтобы, работая совместно, они получили успешные результаты, вошло в обиход после шумихи, поднявшейся вокруг создания атомной бомбы в Лос-Аламосе. Если группа довольно большая, результаты буквально извергаются ею. Когда же достигается критическая масса, то благодаря взаимному стимулированию «размножение» результатов, как и нейтронов, становится неописуемо интенсивнее и быстрее. Когда масса не достигает критической, прогресс идет постепенно, медленно и линейно.

Другие разновидности рабочих привычек ученых теперь стали менее интересными. В образ жизни тех, кто живет в мире науки, отрешенном от остального мира, сейчас входит все больше научных собраний, все больше правительственной деятельности.

Такая простая, но вместе с тем важная вещь, как написание писем тоже претерпела заметные перемены. Занятие это принято считать искусством, и не только в литературе. Из-под пера математиков выходили бесчисленные тома писем. Они писали от руки очень длинные письма, передавая наряду с математическими размышлениями малейшие подробности интимного и личного характера. Теперь, когда существуют секретари, подобный обмен личными высказываниями более затруднителен, равно как и необходимость диктовать технический материал, поэтому ученые в общем и математики в частности пишут друг другу все меньше писем. Если порыться в моей папке с письмами от ученых, которых я знал — коллекция, пополняющаяся уже более сорока лет — то можно заметить постепенный, а после войны ускорившийся переход от длинных, личных, от руки написанных писем до все более официальных, сухих, отпечатанных записок. Последние годы только два человека писали мне от руки: Джордж Гамов и Поль Эрдеш.

Физик Чженьнин Янг, лауреат Нобелевской премии, рассказывает такую историю, иллюстрирующую современный аспект отношений физиков и математиков на интеллектуальном уровне.

Однажды вечером в город приехали несколько человек. Им нужно было постирать свою одежду, и они пошли по улицам города в надежде отыскать прачечную. Наконец, им попалось здание с вывеской на окне: «Прачечная». Один из людей спросил: «Вы не могли бы постирать нашу одежду?» Хозяин ответил ему: «Нет, здесь у нас не прачечная». «Как же?», — спрашивает посетитель, — «На вашем окне даже висит вывеска». «Именно вывески мы тут и делаем», — прозвучал ответ. Это в чем-то характерно для математиков. Они делают вывески, которые, как они надеются, подойдут на все случаи. Однако и физики сделали многое в математике.

В некоторых наиболее конкретных частях математики — скажем, в теории вероятностей — физики вроде Эйнштейна и Смолу-ховского открыли определенные новые области даже прежде математиков. Идеи теории информации, энтропии информации и ее роли в общем континууме исходили от физиков, таких как Лео Сциллард, и инженера Клода Шеннона, а вовсе не «чистых» математиков, которые могли и должны были сделать это намного раньше. Понятие энтропии, свойства распределения, первоначально было введено в термодинамику, а потом приложено к физическим объектам. Но Сциллард (в очень общем виде) и Шеннон смогли определить это понятие и для общих математических систем. Правда Норберт Винер также принимал участие в его зарождении, а также замечательные математики, как Андрей Колмогоров, впоследствии развили, обобщили и приложили это понятие к чисто математическим задачам.

Некоторые математики прошлого, например, Пуанкаре, обладали немалыми познаниями в физике. Гильберт, у которого, казалось, не было особого понимания физики, написал очень важные работы о методах и логике этой науки. Фон Нейман также знал очень многое из физики, но ему, я бы сказал, не было свойственно врожденное понимание и осознание пользы эксперимента. Его интересовали основы квантовой механики, покуда к ним можно было применять математику. А для физики аксиоматический подход к ее теориям имеет то же значение, что грамматика для языка. Математическая ясность для физики может и не быть концептуально решающей.

С другой стороны, чистая математика тоже служила источником появления многих инструментальных средств теоретической физики, а иногда и некоторых ранних ее идей. Общие неевклидовы геометрии, в которых Риман пророческим образом усмотрел будущую их важность для физики, предшествовали теории относительности, так же как квантовую теорию предупредили определение и изучение операторов в гильбертовом пространстве. А слово «спектр», к примеру, употреблялось математиками задолго до того, как кто-то мог даже мечтать об использовании спектрального представления операторов гильбертова пространства для объяснения реального спектра света, излучаемого атомами.

Я нередко задавался вопросом, почему математики не классифицировали специальную теорию относительности, не представили ее в виде различных типов «специальных относительностей» (я не имею ввиду уже существующую общую теорию относительности). Лично я уверен в существовании других «относительностей» в общих пространствах, хотя едва ли какие-нибудь попытки в этом отношении уже предпринимались математиками. Написано огромное количество работ по метрическим пространствам, обобщающим обыкновенную геометрию, в которых отсутствует измерение времени. Ведь если объединить пространство и время, то математикам нечего будет делать! Топологи продолжают хранить верность пространственноподобным пространствам, они не изучали идеи, обобщающие четырехмерное пространство-время. И это мне очень удивительно, как с позиций эпистемологии, так и психологии. (На ум приходит только одна работа, написанная ван Данцигом, в которой он философски размышляет о понятии временной топологии; он говорит, что оно могло бы описываться соленоидальной переменной. Мне эта идея нравится, но все же следует изучать пространства с временным параметром более интенсивно и с большим воображением.)

Всем известно, что специальная теория относительности постулирует и строится исключительно на том, что скорость света всегда неизменна, независимо от движения источника или наблюдателя. Из одного этого постулата следует все, включая знаменитую формулу E = mc2. Выражаясь математическим языком, инвариантность конусов света приводит к группе преобразований Лоренца. Тогда математик мог бы, просто ради математического развлечения, принять в качестве постулата, что, скажем, частота остается постоянной или что инвариантен какой-нибудь другой класс простых физических отношений. Путем логических рассуждений можно было бы посмотреть, каковы были бы последствия такой картины «нереальной» вселенной.

Сегодняшняя математика совершенно отличается от математики девятнадцатого века, даже если принять, что 99 % математиков вообще не знают физики. В физике существует так много идей, рожденных от математического вдохновения — новые понятия, новые формулировки. Нет, я не веду речи об использовании математики в физике, как раз наоборот: я говорю о физике как стимуле для новых математических концепций.

В физике, в отличие от математики, можно судить обо всем, что изучается с примерно одинаковой мерой. Каждый физик может понимать суть почти всей этой науки. Сейчас в ней присутствует совсем немного фундаментальных проблем, среди которых особое место занимает природа элементарных частиц и природа физического пространства и времени.

В целом, в современном исследовании, проводимом в теоретической физике, наблюдаются лишь незначительные изменения того, что уже существует, незначительное совершенствование деталей и продолжение того, что уже было начато, несмотря на большой ум, изобретательность и техническую подкованность многих молодых ученых, чьи фундаментальные предложения, при всем при этом, все же склонны быть ортодоксальными. Вероятно, так было всегда, и действительно новые идеи появляются исключительно редко.

Иногда, чтобы в шутку уколоть своих молодых друзей-физиков, которые только и делают, что изучают какие-нибудь очень необычные частицы, я говорю им, что это не лучший способ обрести вдохновение в основах физики и схеме всего в пространстве-времени.