А как дышит? Каждые одну-две минуты в теле амебы образуется маленькая капелька воды. Она растет, разбухает – и вдруг прорывается наружу, выливаясь из тела животного.
Это пульсирующая вакуоль – «блуждающее сердце» амебы: то здесь появится оно, то там. Вода, проникающая снаружи в тело крошечного существа, собирается внутри вакуоли. Вакуоль сокращается и выталкивает воду наружу, снова в пруд. Вместе с водой внутрь тела животного поступает растворенный в воде кислород. Так амеба дышит.
Значит, у амебы нет крови. Необходимый для дыхания кислород приносит в ее тело морская или прудовая вода – смотря по тому, где амеба живет: в море или пруду. Вода же выносит наружу и переработанные в процессе жизнедеятельности продукты – шлак обмена веществ.
Постепенно, в течение многих сотен миллионов лет, из одноклеточных животных развились многоклеточные.
Шестьсот миллионов лет назад в море уже обитали губки, медузы, актинии. Их мало изменившиеся потомки дожили до нашего времени, и, разрезая их, мы можем заметить, что у этих животных тоже нет крови. Нужный для дыхания кислород они получают прямо из морской воды. Она омывает их снаружи и проникает внутрь тела через многочисленные поры, наполняя все ткани. Оттого медуза и выглядит такой водянистой и прозрачной: она «налита» водой.
Морская вода – колыбель, в которой зародилась жизнь, – долгое время оставалась для обитателей первобытного океана тем единственным транспортным средством, которое доставляло тканям их тела необходимый для жизни кислород.
Но животные, развиваясь, все более и более усложнялись Вода уже не могла так просто, как у медуз и губок, проникнуть со своим драгоценным грузом ко всем сложным органам новых существ. И тут совершается (не сразу, конечно, а на протяжении миллионов лет) замечательное превращение: внутри тела животного образуется свой собственный «водопровод». Целая сеть каналов, наполненных жидкостью, разносящей кислород по всему телу.
Впервые эта кровеносная или вначале «водопроводная» система появилась у древних червей. У них не было еще настоящей крови: кровеносные сосуды этих животных наполняла обычная, лишь немного измененная морская вода. Постепенно, в процессе эволюционного развития сокращалось в ней количество ненужных организму морских солей и появлялись новые вещества, до неузнаваемости изменился ее состав и химические свойства. Мало-помалу захваченная «в плен» морская вода превратилась внутри организма в чудесную жидкость, циркулирующую сейчас в наших венах и артериях. Образовалась кровь.
Можно сказать, что наши далекие предки – древние амфибии, выйдя триста миллионов лет назад на сушу, унесли в своих артериях частицу прежней родины – пре – образованную в кровь морскую воду. До сих пор в крови животных сохранились морские соли. И чем ниже по своей организации животное, тем их больше.
В крови высших животных – птиц, скажем, или зверей – трудно обнаружить явные признаки морской воды.
Оно и понятно. Ведь кровь, этот чудодейственный «сок» нашего организма, выполняет теперь очень многообразные функции. Тысячами протоков и микроскопических ручейков-капилляров растекается она по всему телу. Все клетки тела черпают из крови пищу, поступающую из кишечника, и отдают ненужные вещества и углекислый газ. Железы внутренней секреции выделяют в кровь гормоны, регулирующие работу разнообразных органов. Словом, кровь разносит по телу вместе с кислородом и множество всевозможных солей, кислот, питательных веществ и продуктов распада. Поэтому состав ее очень сложен.
Но у головоногих моллюсков он сложен не настолько, чтобы внимательный исследователь не мог обнаружить в их жилах следы морской стихии.
Глаза, которые видят тепло
«Если, – пишет один ученый, – попросить зоолога указать наиболее поразительную черту в развитии животного мира, он назвал бы не глаз человека (конечно, это удивительный орган) и не глаз осьминога, а обратил бы внимание на то, что оба эти глаза, глаз человека и глаз осьминога, очень похожи». Похожи они не только своим устройством, но часто даже и выражением – странный факт, который всегда поражал натуралистов.
Осьминожий глаз по сути дела ничем не отличается от человеческого. Во всяком случае разница между ними очень небольшая. Разве что роговица у осьминога не сплошная, а с широким отверстием в центре.
Аккомодация (установка зрения на разные дистанции-фокусировка) у человека достигается изменением кривизны хрусталика, а у осьминога – удалением или приближением его к сетчатке, подобно тому как в фотоаппарате движется объектив. Веки осьминога смыкаются тоже иначе, не так, как у нас, они снабжены кольцевой мускулатурой и, закрывая глаз, затягивают его, словно занавеской на кольцевой вздержке.
Ни у кого из обитателей моря нет таких зорких глаз, как у осьминога и его родичей. Только глаза совы, кошки да человека могут составить им конкуренцию.
На одном квадратном миллиметре сетчатки осьминожьего глаза насчитывается около шестидесяти четырех тысяч воспринимающих свет зрительных элементов, у каракатицы еще больше – сто пять тысяч, у кальмара – сто шестьдесят две тысячи, у паука же их только шестнадцать тысяч, у карпа – пятьдесят тысяч, у кошки – триста девяносто семь тысяч, у человека – четыреста тысяч, а у совы даже – шестьсот восемьдесят тысяч.
И размер глаз у головоногих моллюсков рекордный. Глаз каракатицы лишь в десять раз меньше ее самой, а у гигантского спрута глаза величиной с небольшое колесо. Сорок сантиметров в диаметре!
Даже у тридцатиметрового голубого кита глаз не превышает в длину десяти – двенадцати сантиметров (в 200–300 раз меньше самого кита).
Но самые необыкновенные глаза у глубоководных кальмаров: у одних они торчат вверх телескопами, у других на тонких стебельках вынесены далеко в стороны, а есть и такие кальмары, у которых (небывалое дело!) глаза асимметричные: левый в четыре раза больше правого. Как плавают эти животные: ведь голова у них неуравновешена…
Разноглазый кальмар. Левый глаз непомерно велик: вчетверо больше правого
Немалые, наверное, приходится им прилагать усилия, чтобы плыть вперед и не переворачиваться.
Профессор Джильберт Восс из Океанографического института в Майами (США) думает, что большой глаз приспособлен к глубинам, он собирает своей мощной оптической системой рассеянные там крохи света. Маленьким же глазом кальмар обозревает окрестности, всплывая на поверхность. Это вполне возможно.[4]
У кальмаров есть и совсем особенные глаза, ни у кого в природе больше не встреченные, – термоскопические.[5] Они «видят»… тепло.
На плавниках кальмара мастиготевтиса около тридцати миниатюрных «термолокаторов», способных, очевидно, воспринимать тепловые лучи. Темными точками они рассеяны в коже. Под микроскопом видно, что орган состоит из шаровидной капсулы, наполненной прозрачным веществом. Сверху капсула прикрыта толстым слоем красных клеток – это светофильтр, он задерживает все лучи, кроме инфракрасных.
По-видимому, в термоскопических глазах кальмаров происходят фотохимические процессы такого же типа, как и на сетчатке обычного глаза или на фотопластинке. Поглощенная органом энергия приводит к перекомбинации светочувствительных (у кальмаров – теплочувствительных) молекул, которые воздействуют на нерв, вызывая в мозгу представление наблюдаемого объекта.
У гремучих змей Америки и щитомордников, которые водятся у нас в Сибири, тоже есть на голове своеобразные термолокаторы, но устроены они иначе: по принципу термоэлемента.[6]
Змеи при помощи термолокаторов разыскивают в темноте теплокровных грызунов и птиц, которые, как и всякое нагретое тело, испускают инфракрасные лучи.
А зачем термоскопические глаза кальмарам? Ведь на глубинах, где они обитают, нет теплокровных животных…
Плавники этого кальмара снабжены термолокаторами
Облик глубоководных кальмаров необыкновенно причудлив
Нет ли? А кашалот. Этот прожорливый кит ныряет очень глубоко и охотится в морской бездне на кальмаров. Съедает их в день несколько тонн. Я просмотрел содержимое желудка нескольких сот кашалотов, добытых нашими китобойными флотилиями, и убедился, что 95 процентов меню Старины Моби Дика составляют глу – боководные кальмары.
Сотни тысяч кашалотов пожирают ежедневно сотни миллионов кальмаров, преимущественно глубоководных.
Вот почему, я думаю, развились у жителей холодной пучины глаза, которые «видят» тепло. Местных теплокровных животных там нет – это правда, зато сверху, с сияющей лазури моря, вторгаются в царство вечного мрака огромные прожорливые звери. Сигналы о их приближении подают кальмарам термолокаторы.
Реактивный двигатель
Мы переходим теперь к описанию самого интересного органа головоногих моллюсков – реактивного двигателя. Обратите внимание, как просто, с какой минимальной затратой материала решила природа сложную задачу.
Осьминог в раковине морской улитки. Направленная в нашу сторону трубка это и есть воронка – «реактивный двигатель» спрута
Снизу, у «шеи» кальмара (рассмотрим в качестве примера этого моллюска), заметна узкая щель – мантийное отверстие. Из нее, словно пушка из амбразуры, торчит наружу какая-то трубка. Это воронка, или сифон, – «сопло» реактивного двигателя.
И щель, и воронка ведут в обширную полость в «животе» у кальмара: то мантийная полость – «камера сгорания» живой ракеты. Всасывая в нее воду через широкую мантийную щель, моллюск с силой выталкивает ее затем через воронку. Чтобы вода не вытекала обратно через щель, кальмар ее плотно замыкает при помощи особых «застежек – кнопок», когда «камера сгорания» наполнится забортной водой. По краю мантийного отверстия расположены хрящевые грибовидные бугорки. На противоположной стороне щели им соответствуют углубления. Бугорки входят в углубления и прочно запирают все выходы из камеры, кроме одного – через воронку.