Принцип эксперимента. 12 главных открытий физики элементарных частиц — страница 10 из 63

После открытия Резерфордом ядра атома физикам потребовалось время, чтобы понять ядерную физику и то, почему периоды полураспада разных атомов различаются. В то же время открытие многих нестабильных атомов с различными периодами полураспада в природе дало нам широкий спектр инструментов и методов, позволяющих датировать не только окаменелости, но и практически все, что угодно. Невозможно перечислить все, о чем мы знаем благодаря радиометрическому датированию, но давайте рассмотрим несколько примеров.

Мы знаем, что Туринская плащаница – средневековая подделка[48], и можем датировать свитки Мертвого моря. Мы знаем, что Homo sapiens мигрировали из Африки не единожды, а в течение нескольких периодов[49], и мы знаем, как они распространились по всему земному шару, потому что можем датировать человеческие останки – например, останки возрастом 14 300 лет, найденные в пещере в Орегоне[50]. В археологии мы можем не только локально установить временную шкалу для объектов, но и сравнить их в разных странах и даже на разных континентах, чтобы восстановить доисторическую эпоху нашего мира. Мы можем определить возраст льда в 1,5 миллиона лет[51], чтобы понять древний климат по ледяным кернам. Благодаря радиометрическому датированию мы знаем, когда динозавры бродили по Земле, и знаем дату падения астероида, который уничтожил их 65 миллионов лет назад[52]. Углубляясь в прошлое, мы можем идентифицировать первые свидетельства окаменелостей, которые могли быть животными, – разновидность древней морской губки, найденной в породах возрастом 665 миллионов лет в формации Трезона на юге Австралии[53].

Это знание составляет огромную часть культурного и исторического контекста нашей жизни и нашего вида. Мы можем точно сопоставить все эти истории не только потому, что способны сравнивать слои горных пород и скелеты друг с другом, но и потому, что атомы самопроизвольно распадаются на другие атомы. Потому, что Резерфорд, его команда и другие ученые после него разработали и усовершенствовали эти методы. Стремление понять мельчайшие объекты в природе в то время могло показаться незначительным разделом физики, но оно стало основой для нашего понимания культуры, искусства, геологии и нашего места в мировой истории.

И опять причина тому – простые эксперименты нескольких ученых, которые привели к новым знаниям: в основе самой материи лежит крошечное ядро. Это открытие также породило множество вопросов, которые были важны для дальнейшего рассмотрения. Как удерживается ядро? Как электроны остаются в атоме? Первые ответы на эти вопросы пришли из начала квантовой механики, рожденной в результате экспериментов, направленных на изучение природы света и его взаимодействия с материей. Со временем физика превратилась в область все возрастающей сложности, и простые эксперименты, которые так любил Резерфорд, уже не могли раскрыть секреты атома. Даже радиоактивные вещества, обнаруженные в природе, не казались достаточно мощными или гибкими и в конечном итоге стали ограничением, а не инструментом открытия.

Технологический и теоретический прогресс начал идти рука об руку с экспериментами. Физики стали устанавливать удивительные связи между, казалось бы, несопоставимыми аспектами природы. Теперь наша история подводит нас к первому из этих сюрпризов, когда взаимодействие между светом и материей привело физиков к принятию поразительно нового взгляда на наш мир на его самом фундаментальном уровне.

Глава 3Фотоэлектрический эффект: квант света

Что такое свет? Споры о природе света ведутся с XVII века. Сначала предполагалось, что свет подобен частице[54], объекту, движущемуся на скорости через гипотетический эфир по прямой линии, – идея, отстаиваемая Исааком Ньютоном. Другой точки зрения придерживался голландский физик Христиан Гюйгенс, крупная фигура научной революции, который открыл спутник Сатурна Титан, а затем предложил математическую основу волновой теории света в своем «Трактате о свете» 1690 года. Гюйгенс утверждал, что свет – это волна, вибрациями прокладывающая свой путь через эфир (которого, как выяснилось позже, не существует[55]). Хотя из-за большого авторитета Ньютона теория частиц долгое время преобладала, но, как всегда, эксперименты расставили все по своим местам: на первое место вышла волновая теория.

Главный эксперимент, который разрешил дебаты в пользу волновой теории, был впервые проведен Томасом Юнгом в Англии в 1801 году. Современную версию этого эксперимента достаточно легко воссоздать, и большинство студентов-физиков пытаются это сделать. Он начинается с лазерной указки, направленной на черную металлическую пластину с двумя крошечными прорезями-щелями в ней. Это и дало эксперименту его название – «двухщелевой опыт». За двумя прорезями находится проекционный экран. Вопрос: что мы увидим на экране? Наша интуиция воспроизводит аналогичный опыт. Представьте себе забор в лучах солнца, в заборе недостает двух планок: он блокирует солнечный свет и отбрасывает тень на тротуар, но в промежутках, где отсутствуют планки, появляются два ярких пятна. Большинство подумает, что лазерный луч создаст две ярко-красные линии света на экране, причем двойная щель будет эквивалентом недостающих планок и остальная часть экрана будет в тени. Мы этого ожидаем, но происходит совсем иное. На экране появляется набор интерференционных полос: полосы светлых и темных пятен, растекающиеся по ширине экрана[56].

Эта интерференция – уникальное свойство волн. Например, мы можем воссоздать похожую модель с волнами воды. Если вы направитесь к тихому пруду с двумя надувными мячами, будете держать по одному мячу в каждой руке на расстоянии примерно метра друг от друга и синхронно чеканить мячики, создавая две волны, то вы будете наблюдать похожую ситуацию[57]. Там, где пики двух волн встречаются друг с другом, они вызывают «конструктивную» интерференцию; в противном случае, когда перекрываются пики и впадины, происходит «деструктивная» интерференция, и волны ослабляют друг друга. В результате получается красивый веерообразный узор, образованный чередующимися волнами и участками неподвижной воды, который распространяется от вас по всему пруду.

Интерференционные эффекты света проявляются и в нашей повседневной жизни, но куда менее заметно. Эти эффекты придают особые цвета мыльным пузырям, крыльям бабочки или «рисуют» радуги, которые вы видите, глядя на обратную сторону компакт-диска. Интерференция в этих ситуациях выглядит немного сложнее, потому что в них участвует белый свет (состоящий из множества цветов, в отличие от одноцветной лазерной указки), а интерференционные картины зависят от цвета, поэтому в этих сценариях вместо ярких и темных пятен получаются красочные узоры.

Двухщелевой опыт Юнга показывает эту интерференцию в действии: в некоторых местах экрана свет, добавленный к свету, дает еще более яркий свет, а в других местах свет, добавленный к свету, дает темноту. Измеряя расстояние между яркими пятнами на экране и зная длину волны света от лазерной указки, мы можем использовать волновую теорию света, чтобы предсказать, что мы увидим. И когда ученые XIX века добавили к этим знаниям доказательствам того, что свет может рассеиваться, преломляться, и интерферировать, а все это свойства волн, а не частиц, спор был исчерпан: свет – это волна.

Примерно в XIX веке классическая волновая теория света развивалась все больше, предсказывая все известное поведение света, наблюдаемое в лаборатории. Основываясь на нем, мы смогли создать и понять микроскопы и телескопы, зеркала и линзы. Мы смогли объяснить, как работает радуга, почему небо голубое и многие другие явления. Классическая теория продолжала удерживать позиции даже после того, как шотландский физик Джеймс Клерк Максвелл связал ее со своей теорией электромагнетизма, которая дала нам превосходное определение природы световых волн. Для большей точности мы можем сказать, что свет – это электромагнитная волна, движущаяся со скоростью почти 300 млн метров в секунду, обозначаемой буквой c. Волна имеет колеблющуюся электрическую составляющую и магнитную составляющую, постоянно меняющиеся местами. К 1900 году природа света уже не вызывала сомнений.

Затем серия экспериментов начала серьезно ставить под сомнение волновую теорию. Они показали, что свет не всегда действует как волна – иногда казалось, что свет действует как частица. Классическая теория столкнулась с трудностями, когда ученые начали задаваться вопросом, как волновая теория взаимодействует с другими разделами физики. На первый план вышло то, что ранее замалчивалось. Почему свет и материю следует рассматривать как отличающиеся друг от друга? Что заставляет свет действовать одним образом, а материю – другим? Пока физики размышляли над этими вопросами, появилась радикальная идея о том, что и свет, и материя – не совсем то, чем мы их считали. Это ознаменовало начало революции в физике и начало своеобразных, но замечательных теорий квантовой механики.

Давайте подведем итоги того, куда привело нас наше путешествие с момента обнаружения X-излучения в лаборатории Рентгена в 1896 году. Эксперимент с электронами и золотой фольгой доказал физикам, что атомы – не самые маленькие объекты в природе, поскольку внутри атомов находятся крошечные электроны, несущие отрицательный электрический заряд. Атомы оказались не такими стабильными вечными сущностями, какими их хотели видеть химики: физика показала, что атомы могут изменяться, превращаясь в различные элементы путем радиоактивного излучения, многократно изменяя форму, пока не достигнут точки стабильности. Атомы больше не были твердыми сферами материи: оказалось, что они состоят в основном из пустого пространства. Все эти знания предвещали следующие крупные открытия, которые изменили физи