Принцип эксперимента. 12 главных открытий физики элементарных частиц — страница 16 из 63

ести себя как частица, а частицы могут вести себя как волны. Рентгеновское излучение и электрон, радиоактивность и атомное ядро, а теперь и квантовая механика навсегда изменили наш мир. Но в запасе остались и другие неожиданности. Последние несколько глав мы изучали глубины материи, но пришло время поднять глаза. Обратим внимание на сюрпризы природы, которые буквально посыпались на ученых сверху.

Часть IIМатерия за пределами атомов

Пока жажда познания остается неутолимой благодаря безмерности непознанного, деятельность сама оставляет после себя растущее сокровище знания, которое каждая цивилизация удерживает и накапливает как неотъемлемую часть своего мира[89].

Ханна Арендт. Жизнь ума, 1973

Глава 4Облачные камеры: космические лучи и ливни новых частиц

На горе Голливуд, за известным знаком, возвышается величественное белокаменное здание, из которого открывается вид на Лос-Анджелес. Это не особняк, а общественный музей: обсерватория Гриффита. Здесь посетители смотрят шоу в планетарии и рассматривают ночное небо в телескопы, исследуя свое место в космосе. Внутри, среди прохладного темного мрамора, находится серия экспонатов, один из которых – расположенный в квадратной коробке из плексигласа – содержит ключ к следующему шагу в нашем путешествии. Он неприметен, несколько затенен кусками метеорита, лунными камнями и огромным изображением ночного неба. Но любопытные посетители вознаграждаются завораживающим зрелищем: на черном фоне время от времени образуются крошечные следы конденсата, их около 20 каждую секунду. Они появляются внезапно, грациозно опускаются на полсекунды, а затем исчезают.

Устройство представляет собой облачную камеру[90], один из первых детекторов частиц, который позволяет людям видеть частицы, пролетающие мимо за стомиллионную долю секунды. Внутри остаются видимые следы, короткие треки, толщиной с карандаш, образованные альфа-частицами (ядрами гелия), и тонкие, легкие, похожие на паутину дорожки – в основном электроны (бета-лучи) или гамма-лучи. Они меньше атомов, объекты, которые мы не можем увидеть, потрогать или иным образом обнаружить нашими органами чувств. Но вот устройство, которое позволяет нам их видеть. Хотя мы не можем воспринимать эти частицы непосредственно – они слишком малы для этого, – благодаря облачным камерам мы можем увидеть эффект, который они оставляют после себя.

Эта версия камеры в обсерватории Гриффита называется диффузионной камерой, она была разработана в 1936 году американским физиком Александром Лангсдорфом – усовершенствованная облачная камера на основе оригинального изобретения начала 1900-х годов. Ее идея проста, но она изменила наше понимание фундаментальных составляющих природы. Вверху герметичной камеры собираются пары спирта, а затем опускаются на холодную металлическую пластину внизу. Падая и охлаждаясь, пар переходит в состояние, называемое перенасыщением, при котором любое малейшее возмущение приведет к образованию капель. Проносясь сквозь пар, заряженные частицы ионизируют его, оставляя достаточно энергии, чтобы образовать крошечную полоску облака, похожую на белый инверсионный след, который оставляет за собой реактивный самолет.

В этой главе мы проследим за историей облачной камеры – от ее скромного начала до расцвета в начале 1930-х годов, когда она способствовала ряду замечательных открытий, включая совершенно неожиданные новые частицы, которые изменили наш взгляд на материю. Новые частицы, которые даже не входят в атомы. Мы увидим, как этот новый детектор вывел экспериментаторов за пределы их подвалов и повел в горы открывать новые перспективы, подгоняя теоретиков и заставляя их мчаться наверстывать упущенное. Мы также увидим, как эти новые знания о материи позволили совершенно иным способом заглянуть внутрь пирамид и вулканов.

Новая эра открытий началась с, казалось бы, простого вопроса – того самого, который часто задают посетители обсерватории Гриффита, если находят время понаблюдать за непрекращающимся потоком треков частиц, проходящих через облачную камеру: откуда берутся все эти частицы?

В начале 1900-х годов ученые задавались почти таким же вопросом, пытаясь выяснить, откуда исходит дополнительное излучение, которое они наблюдают в своих приборах. Исследования радиации проводились в лабораториях Берлина, Вены и Кембриджа с использованием простого и довольно грубого устройства, называемого электроскопом. Одним из свойств, которое было легко предсказать, был так называемый закон обратных квадратов, согласно которому, если экспериментатор находится в два раза дальше от источника излучения, обнаруженный уровень снизится в четыре раза. По крайней мере, так предполагалось, но некоторые проницательные ученые заметили, что их приборы, по-видимому, улавливают некоторое дополнительное излучение. Почему радиации было больше, чем они ожидали? Без ответа на этот вопрос исследователи едва ли могли надеяться понять, что происходит в их экспериментах в лаборатории.

Ответ казался простым: излучение исходит из минералов в Земле. В своей работе по открытию радия и полония, которые использовались в качестве лабораторных источников, Мария Кюри, как известно, провела годы, работая в старом сарае, где измельчала и перерабатывала тонны минерала, называемого смоляной обманкой. Эти два новых элемента были ценным предметом для ученых, изучающих свойства излучения, и они происходили из самой Земли. Таким образом, по логике, именно эти минералы должны были создавать тревожный радиационный фон. Ответ казался ясным, как и способ его проверки. Если радиация исходила от Земли, ее должно быть меньше в атмосфере. Ученые подозревали, что примерно на высоте 300 метров излишняя радиация должна полностью исчезнуть.

Для молодого предприимчивого физика это стало бы прекрасным приключением. Все, что нужно, – это прибор для обнаружения радиации и высота. В начале 1900-х годов был только один способ достичь больших высот, если вы не альпинист: полет на воздушном шаре. По крайней мере, три разных исследователя быстро поднялись в небо в поисках фонового излучения, взяв с собой простые электроскопы[91], но все три эксперимента провалились. Движение шара сотрясало электроскопы, а изменение давления приводило к проникновению воздуха в устройство и проблемам с электрической изоляцией.

Электроскопы были популярны, потому что их мог дешево изготовить практически любой желающий. Все, что для этого требовалось, – это металлический стержень, установленный внутри герметичного контейнера, например банки, так, чтобы он был электрически изолирован. На конце стержня подвешивались два тонких кусочка золотой фольги. Когда заряженный предмет – например стеклянный стержень, натертый мехом, – касался электрода, заряд передавался вниз на золотые листья, которые разводились в стороны под действием сил электрического отталкивания, образуя перевернутую форму буквы V. Если бы устройство было идеально герметичным, листья навсегда остались бы в таком положении. Чтобы измерить излучение, вы просто заряжаете электроскоп, затем подносите к нему радиоактивный образец, который ионизирует часть воздуха внутри и заставляет листья терять свой заряд и медленно опускаться обратно навстречу друг другу. Скорость, с которой падают листья, преобразуется в количество радиации, воздействию которой подверглось устройство. Электроскопы явно предназначались для устойчивого лабораторного стенда, а не для того, чтобы использовать их на воздушном шаре.

После этих провалов и растущего замешательства немецкий священник-иезуит и физик Теодор Вульф понял, что решение заключается в создании более надежного электроскопа. В 1909 году Вульф изменил прибор, использовав вместо золотой фольги две тонкие проволоки с платиновым покрытием. Это оказалось гораздо более надежным решением. Вульф отправился в Париж, чтобы протестировать свой инструмент на двух разных высотах. Сначала он встал у основания Эйфелевой башни и измерил уровень радиации. Затем он поднялся на башню и на высоте 300 метров – как раз там, где, как ожидалось, излучения не будет, – обнаружил, что радиация сохраняется. Другие переняли его метод, но их результаты были столь же ошеломляющими. Итальянский физик Доменико Пачини решил для начала исследовать уровень радиации как можно глубже и взял электроскоп Вульфа под воду, где он ожидал обнаружить больше излучения, ведь его окружат минералы Земли. Он обнаружил обратное. Усовершенствованный электроскоп работал, но результаты оказались не такими, как предполагали ученые. Несколько физиков начали склоняться к мысли, что излучение исходит вовсе не от минералов в Земле.

Среди них был двадцатидевятилетний австрийский физик Виктор Гесс, который понял, что это его шанс. Он нанял пилота воздушного шара, завернулся в шерстяное пальто и поднялся в небо с поля у Вены. Воздушный шар взлетел более чем на 5300 м, что значительно выше базового лагеря Эвереста. К своему воздушному шару Гесс прикрепил два новых электроскопа Вульфа, специально приспособленных для работы с перепадами температуры и давления. Несмотря на разреженный воздух и температуру около –20 градусов по Цельсию, ему удалось получить точные измерения и в конце концов спуститься.

Гесс был не первым, кто поднимался на такие высоты или пытался измерить уровень радиации в атмосфере, но он был первым человеком, который смог получить надежный результат. Вернувшись на землю, Гесс просмотрел то, что записал. По мере того как он поднимался, количество радиации сначала немного уменьшилось, но затем начало расти и расти, пока не стало ясно, что на больших высотах радиации гораздо больше, чем на малых. Излучение не могло исходить с Земли – оно должно было исходить из-за пределов атмосферы. Но откуда? Гесс совершил еще один подъем на воздушном шаре во время солнечного затмения, чтобы исключить Солнце как возможный источник. Он измерял совершенно новый источник радиации. Теперь Гесс, Вульф, Пачини и другие физики поняли, что излучение можно обнаружить не только в минералах или в лаборатории. Излучение шло прямо из космоса.