Принцип эксперимента. 12 главных открытий физики элементарных частиц — страница 24 из 63

[130], и они оба находились при этом в одной лаборатории.

Резерфорд принял решение. И впервые в его жизни столь значимое решение основывалось исключительно на теоретическом прогнозе, но он знал, что если они не начнут действовать прямо сейчас, то их могут опередить. Он вызвал Кокрофта и прогремел: «Постройте мне ускоритель на миллион электронвольт – мы без проблем расколем ядро лития!»

Теперь, когда Кокрофту требовалась лишь десятая часть напряжения, которое он рассматривал ранее, задумка стала казаться более осуществимой, и он нацелился на 300 тысяч вольт. Это было минимальное напряжение, при котором, согласно его расчетам, может произойти что-то интересное. Но Кокрофт был отчаянно занят организацией экспериментов по созданию мощного магнитного поля в лаборатории по соседству, поэтому и он, и Резерфорд поняли, что ему нужен партнер, который может проводить эксперименты и который интересуется ускорением частиц. Они нашли добровольца в лице Эрнеста Уолтона.

Вместе Кокрофт и Уолтон хотели провести самый большой эксперимент во всем Кавендише. Даже при напряжении в 300 кВ установка была уж очень сложным и дорогим зверем. Ученые признавали, что им придется столкнуться и с другими проблемами, помимо высокого напряжения, чтобы заставить ускоритель частиц работать. Во-первых, им понадобится источник частиц. В случае с электронами все достаточно просто, но создать постоянный поток протонов, альфа-частиц или чего-то еще гораздо сложнее. Затем им нужно послать эти частицы через высокое напряжение, чтобы напитать их энергией. К тому же надо было придумать, как управлять лучом и работой самого устройства с безопасного расстояния, поскольку оно будет испускать излучение. Как только у них появятся высокоэнергетические частицы, их нужно направить в какую-то мишень. И, наконец, когда все это будет сделано, понадобится система детекторов, чтобы видеть, к чему привела реакция.

По крайней мере об одном они не беспокоились: в лаборатории было полно экспертов по подсчету вспышек на экране, и постоянно возникали новые идеи, как обнаружить частицы, в том числе с помощью облачной камеры Вильсона. Но Кокрофт и Уолтон оказались перед трудной задачей, когда дело дошло до создания источника протонов, генерирования высоких напряжений без разрушения устройства и успешного контроля самого эксперимента.

Установка современного оборудования, предназначенного для передачи высокого напряжения, в плохо спроектированной университетской лаборатории пугала многих физиков, но Джон Кокрофт был полон решимости заставить ускоритель работать. Понимая, что они не могут производить все необходимое собственными силами, он обратился к создателям ведущего в мире высоковольтного оборудования – своим бывшим работодателям в Metrovick. Его первой просьбой был источник питания, мотор-генератор, который Кокрофт приобрел за хорошую цену. Затем им понадобился трансформатор, чтобы повысить напряжение до 300 тысяч вольт, но, когда Кокрофт запросил его, возникли трудности. Трансформаторы Metrovick, используемые для высокоэнергетических рентгеновских трубок и электрических испытаний, попросту слишком велики, чтобы пройти через узкий арочный дверной проем Кавендишской лаборатории. Поэтому Кокрофт попросил Metrovick сделать такой трансформатор, который бы смог.

Следующим шагом было преобразование высоковольтного переменного тока от трансформатора в источник постоянного тока. Переменный ток, который обычно поступает от наших розеток, колеблется между положительными и отрицательными значениями примерно 50 раз в секунду, но Кокрофт знал, что это не годится для ускорения частиц, потому что отрицательная часть волны переменного тока будет скорее замедлять, чем ускорять частицы. Ему был нужен постоянный ток для подачи напряжения, которое всегда толкало бы протоны вниз по трубке. А для этого требовалось еще одно устройство — выпрямитель, но не было доступных коммерческих выпрямителей, которые могли бы выдержать 300 тысяч вольт. Кокрофт понимал, что это ограничение надо преодолеть, поскольку в будущем ему понадобится еще более высокое напряжение. Поэтому, пока Metrovick все еще работал над новым трансформатором, Кокрофт и Уолтон приступили к изобретению выпрямителя собственными силами.

Кокрофт по большей части занимался снабжением, пока Уолтон взял на себя основную экспериментальную работу. Одна из проблем, с которой они столкнулись, касалась стеклянных колб, составлющих часть выпрямителя. Уолтон заказывал изготовление колб стеклодуву Феликсу Нидергесассу, а затем подвергал их высокому напряжению с помощью катушки Теслы, что часто приводило к катастрофическим последствиям. Электрические поля концентрируются вокруг любых острых краев, будь то пыль или дефект стекла, а «коронные разряды»[131] вызывают искры у поверхности и пробивают в ней отверстия. Чтобы добиться правильной формы колб, потребовались месяцы проб и ошибок, и в конце концов конструкция стала настолько большой, что уже не умещались в стеклодувной лаборатории Нидергесасса, и колбы пришлось заказывать на специализированном заводе.

Помимо стеклянных колб, требовались специальные провода для анода и катода, источник нагрева для катода, защита от коронного разряда, предотвращающая искрение, и надежные вакуумные насосы. Как и большинство исследователей в Кавендише, они использовали красный сургуч Банка Англии для всех соединений и печатей. Все компоненты должны были быть проверены на способность выдерживать высокое напряжение. Уолтон провозился несколько месяцев. Он должен был работать быстро, но в то же время не мог спешить, поскольку имел дело с опасными высокими напряжениями. Каждый раз, когда где-то требовалась замена, он ломал все восковые печати, заново все чистил, нагревал и снова запечатывал перед повторным тестированием – уходили целые дни на поиск утечек вакуума и их устранение.

Резерфорд иногда заглядывал во время своих обходов, чтобы посмотреть, как идут дела. При виде крупногабаритного оборудования от промышленных поставщиков он в своем типичном стиле жаловался, что все слишком громоздко или слишком дорого, что побудило физиков из Metrovick сказать, что пускай тогда «смотрит на все через другую сторону телескопа, чтобы не казалось таким огромным». К 1930 году компания Metrovick выполнила свое обещание и выпустила новый компактный трансформатор, который мог пройти через дверь Кавендишской лаборатории прямиком в подвал. Но пол лаборатории все равно пришлось укрепить, чтобы удержать такую установку. Компания также поставила новую вакуумную систему, после того как один из их ученых, Билл Берч, изобрел насос на новом типе масла (Apeizon). Кокрофт получил в свои руки несколько прототипов еще до того, как новинка увидела свет.

Несмотря на весь прогресс, ученым еще предстояло создать источник протонов или ускорительную трубку, через которую будут проходить частицы. Для источника протонов они протестировали ряд различных установок и в итоге остановились на сестре электронно-лучевой трубки, называемой анодно-лучевой трубкой. Устройство похоже на электронно-лучевую трубку: длинный стеклянный цилиндр, заполненный газообразным водородом, с большим напряжением, приложенным между анодом (на одном конце) и катодом (теперь в середине трубки). Протоны создаются электрическим полем, разрывающим газообразный водород, и затем подтягиваются к отрицательному катоду, в котором есть отверстие для их прохождения. Наконец, они выходят с другой стороны в направлении, противоположном направлению электронов (катодные лучи), создавая при этом прекрасное флуоресцентное свечение в трубке.

Тонкая трубка была размещена в верхней части установки так, чтобы протоны могли перемещаться вниз к ускоряющей секции, стеклянной вакуумной трубке длиной 1,5 метра. Внутри трубки высокое напряжение подключалось к двум цилиндрическим металлическим электродам с зазором между ними. Эти протоны должны ускориться высоким напряжением, проходя вниз через зазор. Первый в мире ускоритель частиц почти готов.

К маю 1930 года они были готовы к проведению испытаний. В течение недели Кокрофт и Уолтон медленно увеличили напряжение с 50 до 100 тысяч В, а затем – до 280 тысяч В, но появились признаки того, что они достигли предела. Однако появившийся пучок протонов не был удовлетворительным: он был полностью расфокусирован и растянут по кругу диаметром около 4 см. С таким широким лучом ничего не получится. Чтобы это исправить, пришлось бы все собирать заново. Но сначала они решили посмотреть, не произойдет ли в таком варианте чего-нибудь интересного с научной точки зрения. Они предположили, что при такой низкой энергии протоны мало что могут сделать с ядром – возможно, возбудить несколько частиц и испустить гамма-лучи. Поэтому Кокрофт и Уолтон соорудили простой электроскоп и поместили образец лития под луч. Ничего. Бериллий? Крошечный эффект. Свинец? Какой-то небольшой эффект, но, скорее всего, просто что-то не так с самим аппаратом. Прежде чем они смогли продвинуться дальше, трансформатор вышел из строя.

Пришло время подвести итоги. Поскольку трансформатор сломался, нужно было решить, стоит ли его ремонтировать, чтобы восстановить машину на 300 кВ. Учитывая отсутствие результатов, исследователи не были уверены, что стоит. Что, если расчеты, которые они сделали, неверны и 300 кВ не хватит для расщепления ядра? Даже небольшое изменение в числах давало совершенно иные результаты. Тем временем Резерфорд – ныне лорд Резерфорд – все больше теряет терпение из-за отсутствия результатов. Нужно было любой ценой удержать его на своей стороне и доказать, что его инвестиции в их большой эксперимент того стоили. Хотя было бы быстрее перестроить машину на 300 кВ, чем строить новую, более крупную версию, Кокрофт и Уолтон должны были признать, что 300 кВ все равно стали бы только первым шагом. В конце концов, все решило то, что их перевели в новую большую комнату, в которую свет проникал через красивые высокие арочные окна вдоль одной стены, в то время как другая была увешана досками. В такой комнате можно легко разместить более крупную машину. Кокрофт и Уолтон решили, что они обязаны в следующий раз получить результаты, поэтому решили отказаться от машины на 300 кВ и сосредоточить свои усилия на создании новой машины на 800 кВ.