Схожая идея также начинает применяться в криминалистике. Большинство методов по сбору следов наркотиков, таких как кокаин, или следов выстрелов уничтожают сами образцы. Но ученые, в том числе доктор Мелани Бейли из Университета Суррея, Великобритания, в настоящее время используют анализ ионных пучков для изучения улик, найденных на месте преступления[142]. Не уничтожая улики, доктор Бейли может проверить элементный состав образца и обнаружить крошечные количества наркотиков или следы, которые были упущены другими. Она даже может сравнить свои результаты с материалами, найденными на одежде или теле подозреваемых: например, крошечные образцы почвы, взятые с обуви, могут указать на подозреваемого.
Для физиков 1932 года все эти технологии были далеким будущим. Кокрофт и Уолтон работали с ускорителем в течение нескольких лет, но вскоре инициатива перешла к новым исследователям. Джон Кокрофт взял на себя управление другими подразделениями лаборатории, а позже работал над использованием ядерной энергии в энергоснабжении. Эрнест Уолтон получил академическую должность в своей родной Ирландии – в Тринити-колледже в Дублине. Этот напряженный период в их карьере, который принес им Нобелевскую премию в 1951 году, больше не повторялся.
Их успех, пришедшийся на тот же год, когда был открыт позитрон, осуществил мечту Резерфорда – открытие того, что находится внутри ядра. Все части головоломки теперь сошлись воедино: ядро атома содержит как протоны, так и нейтроны, обычно в примерно равных количествах. Изотопы различаются по массе, потому что у них разное количество нейтронов, в то время как количество протонов остается неизменным. Некоторые конфигурации более стабильны, чем другие, при этом нестабильные радиоактивны. Теперь задача Резерфорда состояла в том, чтобы понять силы, которые каким-то образом удерживают ядро вместе. Как присутствие нейтронов мешает положительным протонам разрушить ядро? Возникла идея новой, ядерной силы, удерживающей их вместе.
В то время как изобретение Кокрофта и Уолтона все еще использовалось как в научных, так и в промышленных целях, стало ясно, что ускорители частиц, использующие огромные напряжения, скоро достигнут своего предела. Требовалась новая технология. Резерфорд и его коллеги и не подозревали, что именно эта технология, уже разработанная в Соединенных Штатах, почти опередила их в достижении всемирно известного результата.
Глава 6Циклотрон: искусственная радиоактивность
В 1932 году, когда ускоритель частиц впервые успешно расщепил атом, список элементарных частиц быстро вырос. Он включал в себя электрон и его анти-версию – позитрон, а также протоны и нейтроны. Все они считались неделимыми, хотя позже мы увидим, что протоны и нейтроны тоже имеют структуру. Были введены фотоны, частицы света, и всего четыре года спустя были обнаружены положительные и отрицательные мюоны, тяжелые родственники электронов и позитронов. Никто не знал значения этих частиц, которые не были частью атомов, важны ли они и сколько еще частиц, подобных им, пока не открыто. Но физики понимали, что для того, чтобы узнать больше, им придется последовать примеру Кокрофта и Уолтона и разрушить атом.
Были намеки, которые подтолкнули их в этом направлении, один из которых мы уже видели: тот факт, что какая-то неизвестная сила, казалось, удерживает протоны и нейтроны вместе внутри атома и не дает ядру разлететься на части. Другой намек пришел из химии – или, если точнее, из того, чего недоставало в химии. Уран считался самым тяжелым из известных веществ в периодической таблице[143] того времени, но в таблице не хватало четырех элементов с номерами 43, 61, 85 и 87. Расположив элементы по атомному весу и аналогичным химическим свойствам, русский химик Дмитрий Менделеев в XIX веке предсказал, что эти элементы должны существовать наряду с другими, которые впоследствии были обнаружены. Например, в таблице под алюминием был пробел, и Менделеев предсказал элемент, который он назвал «экаалюминием», а также его химические свойства, плотность и температуру плавления. Галлий (31-й элемент) был открыт в 1875 году и почти точно соответствовал предсказаниям химика. Теперь мы можем назвать недостающие элементы теми именами, которые у них есть сейчас – технеций (43), прометий (61), астат (85) и франций (87), – но в начале 1930-х годов они еще не были открыты и поэтому оставались безымянными.
Вы могли бы подумать, что ученые станут искать эти недостающие элементы, но на самом деле они не тратили свою энергию в этом направлении, и на то были веские причины. Открытие радиоактивности научило их тому, что не все элементы периодической таблицы стабильны, как ранее считали химики, поэтому вполне возможно, что недостающие элементы просто исчезают со временем и, следовательно, их не удастся обнаружить. Теперь, с открытием радиоактивности, атом оказался непредсказуемым, запутанным и настолько динамичным, что химики то и дело заходили в тупик.
Более масштабная цель заключалась в понимании природы атомов и структуры ядра, а также сил, которые удерживают все это вместе. А для этого надо изучить и понять особенности как можно большего числа элементов и попытаться создать всеобъемлющую теорию, которая может предсказать свойства элементов и их изотопов, известных и неизвестных, радиоактивных или нет.
Если бы только можно было создать пучки частиц, достаточно мощные, чтобы расщепить атомы каждого элемента, – кто знает, чего могла бы достичь наука… Именно это побудило Кокрофта и Уолтона обуздать огромные напряжения и построить первый в мире ускоритель частиц, но они были не единственными, кто работал над этой проблемой. Через несколько лет их обойдет молодой американец по имени Эрнест Орландо Лоуренс. Изобретенная им машина не только в итоге будет превалировать в области ядерной физики, но и привлечет ученых из разных дисциплин к преодолению границ и открытию неизведанных областей. А еще работа Лоуренса навсегда изменит медицину.
Лоуренс никогда не собирался становиться физиком. Он был полон решимости изучать медицину, когда поступил в Университет Южной Дакоты и выбрал химию в качестве дополнительной специальности. Любовь к физике пробудил в нем наставник, который обратил внимание на Эрнеста Лоуренса из-за его хобби.
Выросшие в Южной Дакоте, Лоуренс и его сосед Мерл Тьюв большую часть своего свободного времени собирали радиооборудование, общались с помощью азбуки Морзе на чердаке семьи Тьюва, изучали и устанавливали реле, передатчики и прочие мелочи. Когда Лоуренс уехал в университет, он оставил свое радиооборудование дома, но вскоре пожалел, что у университета нет собственного радиоприемника. Лоуренс разыскал декана факультета электротехники Льюиса Эйкли и представил ему четкие и внятные аргументы в пользу покупки некоторого радиооборудования вместе со списками запчастей и указанием их цен.
Вечером Эйкли отправился домой и с энтузиазмом рассказал жене об Эрнесте Лоуренсе, его научном любопытстве и явных способностях. Но почему Лоуренс не поступил ни на физический, ни на электротехнический факультет? Почему он изучал медицину и химию? Убежденный, что Лоуренс – гений в физике, Эйкли выделил ему 100 долларов на покупку радиоаппаратуры, предоставил место для ее установки и оставил его за главного. Эйкли, физик по образованию, осторожничал и не подталкивал Лоуренса к смене курса, поскольку считал, что хорошие студенты сами поймут ценность физики. Он робко спросил Лоуренса, считает ли тот физику полезной ввиду его интереса в области беспроводной связи, но Лоуренс так не думал. Он немного изучал ее в средней школе, но сомневался, что у него есть способности чего-то добиться в этом предмете.
Вопреки всему Эйкли даже пригласил Лоуренса на ужин и начал потчевать его рассказами о великих физиках и их приключениях: начиная с Генриха Герца, увидевшего связь между светом и электричеством, и заканчивая Марией Кюри и ее открытием радиоактивных элементов. Самыми захватывающими были рассказы об Эрнесте Резерфорде, доказавшем, что атом вовсе не неделимый. Эйкли рассказал о приключениях, которые ожидали исследователей в этой области. Они изучали внутренний мир материи и раскрывали тайны Вселенной в мельчайших масштабах, от которых зависит все остальное, включая любимую химию Лоуренса, биологию и медицину. Хорошо тренированный ум, настаивал Эйкли, поможет достичь успехов в любой области, и физика отлично подойдет для такой тренировки. Он выдвинул Лоуренсу последнее предложение: если он проведет один летний месяц, изучая с ним физику, и все равно не проявит к ней интереса, Эйкли никогда больше не поднимет этот вопрос. Лоуренс согласился. К началу нового учебного года сделка окупилась.
«Класс, это Эрнест Лоуренс, – объявил однажды Льюис Эйкли на лекции по физике. – Хорошенько на него посмотрите, потому что придет тот день, когда вы все будете гордиться тем, что учились с ним вместе». Студенты уставились на высокого молодого человека с очаровательной улыбкой, аккуратными каштановыми волосами и голубыми глазами. Однажды, когда Лоуренс заснул на лекции, Эйкли сказал остальным ученикам: «Не обращайте внимания. Пускай спит! Даже во сне он лучше знает физику, чем все вы, бодрствующие»[144]. Эйкли не мог знать, что ждет его любимчика впереди, но его слова оказались пророческими.
К 1928 году, в возрасте всего 27 лет, Эрнест Лоуренс был принят на работу доцентом физики в Калифорнийский университет. Наконец-то возглавив собственную исследовательскую программу и имея за спиной свободу и поддержку, он нуждался только в одном – хорошей теме для исследования.
На этой ступени истории у нас есть преимущество перед Лоуренсом, поскольку мы уже знаем, как обстояли дела в 1928 году и что должно было произойти всего через несколько лет. Мы знаем, что теория Гамова подстегнула Кокрофта и Уолтона разработать первый ускоритель в Кембридже. Мы знаем, что для расщепления ядра лития достаточно энергии всего в несколько сотен кэВ. Но Лоуренс, как и Кокрофт с Уолтоном, ничего из этого не знал. Он знал, что физики открыли электроны и рентгеновские излучение и что у атома есть ядро, и был осведомлен о противоречащих интуиции реалиях квантовой механики и корпускулярно-волновом дуализме. О