К 1954 году, когда начал работать Беватрон, список странных частиц увеличился: по словам Альвареса, было найдено «несколько заряженных частиц и нейтральная частица, все с массами около 500 МэВ»[185], а также три более тяжелые, чем протон, нейтральная лямбда-частица (Λ), две заряженные сигмы-частицы (Σ±) и отрицательная кси-частица (Ξ—). Далекий от того, чтобы разом ответить на все их вопросы, список странностей только увеличивался по мере того, как ученые проводили больше измерений. Появлялись странные частицы со временем жизни в 100 миллиардов раз дольше, чем ожидалось. Не то чтобы они жили долго с объективной точки зрения – они распадались всего через 10–10 секунд, в миллион раз быстрее, чем мгновение ока, – но по прогнозам теоретиков они должны распадаться всего за 10–21 секунд, то есть еще в 100 миллиардов раз быстрее!
Кроме того, вопреки ожиданиям физиков, некоторые частицы не производились в равных количествах.
На тот момент физики считали, что в природе существуют четыре силы. Гравитация и электромагнетизм были хорошо известны, но они не объясняли ядерную сферу, поэтому были предложены две другие. Концепция сильного ядерного взаимодействия была выдвинута Хидеки Юкавой в 1934 году как сила, которая связывает протоны и нейтроны в ядре. Его теория исходила из частицы с массой, примерно в 200 раз превышающей массу электрона, которая переносила или опосредовала эту силу. Сначала считалось, что мюон – переносчик сильного взаимодействия, но вскоре это было исключено, поскольку он не взаимодействовал с ядерной материей ожидаемым образом. Позже была выдвинута кандидатура пиона, но это все еще оставалось неясным. Второй предложенной силой было слабое ядерное взаимодействие, ответственное за радиоактивный бета-распад, оно описывалось в теории Энрико Ферми еще в 1933 году. Куда вписывались странные частицы, оставалось неизвестным. Может ли быть так, что странные частицы создаются одной силой, сильным ядерным взаимодействием, но разрушаются через слабое взаимодействие?
В Мичиганском университете двадцатипятилетний физик-экспериментатор Дональд Глазер столкнулся с проблемой странных частиц. Даже в 1950 году он понимал, что странные частицы привели к тому, что физика элементарных частиц, по его словам, «как бы застряла»[186]. В то время все в этой области знали, в чем причина: недостаточно данных. Без дополнительных данных теоретикам недоставало информации, чтобы выяснить, что такое странные частицы или как они сочетаются с другими частицами и силами в природе. Глазер намеревался найти способ это исправить.
Строительство больших ускорителей само по себе не решало всех загадок странных частиц. Конечно, ускорители могут создавать много странных частиц, но все это бесполезно, если их не получается обнаружить и измерить. Пока Альварес и другие занимались созданием больших ускорителей, идея Глазера заключалась в создании детектора, который мог бы улавливать больше данных от космических лучей, чем облачная камера.
В отличие от многих других физиков того времени, Глазер не хотел работать в больших лабораториях, предпочитая вместо этого свою небольшую университетскую группу. Он тщательно обдумал, какой жизнью он хотел бы жить. Будучи спортивным человеком, он мечтал жить на вершине горы на горнолыжном курорте, днем катаясь на лыжах, пока его оборудование собирало данные. По вечерам он бы их просматривал и открывал новые частицы. Он знал, что некоторые швейцарские исследователи живут именно так, медленно, но устойчиво набирая новые знания с большим количеством времени для размышлений.
Глазер знал, что в новом детекторе ему надо найти способ придать взаимодействиям крошечных частиц огромное усиление, чтобы сделать их доступными для записи. Он имел в виду метастабильное состояние, когда крошечное количество энергии вызывает гораздо больший эффект, точно так же, как облачная камера использует метастабильное состояние перенасыщенного пара, чтобы вызвать образование облачных капель. Сначала Глазер рассматривал возможность использовать облака, но, когда узнал, что группа в Брукхейвене пытается построить облачную камеру с высоким давлением, где сброс между снимками занимает 20 минут, решил, что это бесполезно, так как такая камера никогда не соберет достаточно данных. Он отправился на охоту за новым способом регистрации частиц.
Глазер предположил наличие какой-нибудь жидкости, которая затвердевала бы при прохождении через нее частицы, образуя нечто вроде «пластиковой рождественской елки» из распадов и взаимодействий частиц. Он мечтал, что сможет собирать эти пластиковые деревья, измерять все углы и таким образом открывать новые частицы. Но, когда он попробовал провести такой эксперимент с химическим раствором, вместо того чтобы образовать «рождественские елки», смесь просто превратилась в вязкую коричневую массу. Глазер не стал утруждать себя публикацией результатов и перешел к следующей идее. Он попытался использовать кристаллы льда в воде, но понял, что потребовалось бы слишком много времени, чтобы растопить лед и возобновить эксперимент. Глазер перепробовал все физические, электрические и химические установки, какие только мог себе представить, но ни одна из них, казалось, не была способна произвести запись событий с участием частиц, пригодную для сбора данных.
Но в 1951 году мысль о скороварках все изменила. В скороварке вода нагревается до температуры выше точки кипения (100 градусов по Цельсию), прежде чем появляются пузырьки. Глазер задался вопросом, можно ли налить в скороварку жидкость и довести ее до такой температуры выше точки кипения, чтобы в случае быстрого снятия крышки она оказалась достаточно нестабильной и чувствительной к воздействию частиц[187].
Он попробовал несколько различных жидкостей, пытаясь выяснить, будут ли они образовывать пузырьки при воздействии источника излучения. У газированной воды слишком большое поверхностное натяжение для работы, с имбирным элем дела обстояли не лучше. В какой-то момент Глазеру пришла в голову идея, что подойдет жидкость с небольшим количеством алкоголя, и он нашел общедоступную жидкость, которая соответствовала критериям, – пиво. Единственная проблема заключалась в том, что алкоголь был запрещен на территории университета, поэтому Глазер протащил ящик на кафедру уже после закрытия. Он опустил бутылку в большой стакан с горячим маслом, поставил рядом источник кобальта-60 – мощный гамма-излучатель – и снял крышку в ожидании, будет ли пиво пениться по-другому из-за источника излучения. Глазер пришел к выводу, что на пиво, по-видимому, не влияет источник кобальта, но он забыл принять во внимание еще один аспект своего ночного эксперимента. Горячее пиво вспенилось так быстро, что взлетело в воздух, ударившись о потолок. На следующее утро Глазер оказался в неудобном положении: ему пришлось объяснять, почему вся кафедра провоняла пивом. Заведующий кафедрой, трезвенник, был в ярости[188].
В конце концов Глазер изучил соответствующие химические таблицы, где наткнулся на жидкость, называемую диэтиловым эфиром, которая обычно используется в качестве анестетика. Глазер создал маленькую стеклянную колбу размером примерно с большой палец и налил в нее диэтиловый эфир. Однажды ночью, примерно в 3 часа, он перегрел эфир, используя горячее масло. Затем он взял источник кобальта-60 и поднес его к колбе. Жидкость взорвалась пузырьками. Он поднес источник снова, и произошло то же самое. Физик быстро дополнил установку камерой с высокой частотой кадров и фотовспышкой, которую позаимствовал у коллег-инженеров, и сумел сделать снимок гамма-лучей, проходящих через крошечный детектор. У него получилось. Глазер изобрел новый тип детектора частиц: пузырьковую камеру[189].
Глазер понял, что его новое изобретение позволит собирать данные с огромной скоростью. В пузырьковой камере жидкость в 1000 раз плотнее воздуха, поэтому вероятность увидеть, как частица пройдет через камеру, в 1000 раз выше, чем в облачной камере. Он подготовил доклад, готовый представить свою работу на собрании Американского физического общества в Вашингтоне в апреле 1953 года.
Прибыв на конференцию, Глазер был расстроен, узнав, что его выступление запланировано на последний день, когда все пожилые и более признанные физики уже спешат на свои рейсы. Вечером за выпивкой он пожаловался на свое затруднительное положение группе старых физиков, среди которых был Луис Альварес. Альварес признал, что к тому времени он тоже покинул бы конференцию, но ему стало любопытно, над чем работает Глазер. Когда Альварес узнал о пузырьковой камере, он сразу понял значение идеи молодого человека: «Я безуспешно ломал голову в поисках подходящего детектора для Беватрона, который вот-вот запустят. Мне сразу стало ясно, что камера Глазера отлично подойдет»[190].
Альварес позаботился о том, чтобы два члена его команды остались и послушали выступление Глазера. И Альварес, и Глазер знали, что нужно сделать, чтобы пузырьковая камера показала себя как можно лучше в Беватроне. Во-первых, очевидным улучшением было бы заменить диэтиловый эфир жидким водородом: поскольку водород в основном состоит из протонов, это приведет к простым столкновениям высокоэнергетических протонов из Беватрона с протонами водорода. Однако водород чрезвычайно взрывоопасен, а жидкий водород чрезвычайно холодный – около –250 градусов по Цельсию, – поэтому все нужно делать очень осторожно. Вторая задача состояла в том, чтобы увеличить размер детектора и дать высокоэнергетическим протонам достаточно места для взаимодействия в водороде, создания странных частиц и оставления длинных треков, которые можно сфотографировать и проанализировать.