Неуловимое нейтрино наконец-то было найдено, а закон сохранения импульса соблюдался даже в самом малом масштабе, объясняя процесс радиоактивного бета-распада. Нейтрино было не просто плодом теоретического воображения, а реальным и осязаемым: неуловимой, нейтральной, легкой частицей, способной беспрепятственно путешествовать в самые глубокие уголки Вселенной. Открытие нейтрино привело к совершенно новым областям исследований.
После первого обнаружения возникало все больше и больше вопросов о нейтрино. Каковы их свойства? Существует только один тип нейтрино или несколько? Они стабильны или имеют ограниченный срок жизни? В ходе каких процессов во Вселенной они появляются? Как и многие эксперименты, которые мы видели, проект «Полтергейст» породил лавину новых вопросов, и со временем на большинство – но не на все – из них были даны ответы. Неуловимое нейтрино оказалось куда важнее, чем считалось ранее. Оно не просто помогло нам понять радиоактивный распад, оно подарило нам новый взгляд на Солнце, сверхновые и происхождение материи.
Растущее значение и богатство этой области исследований можно увидеть по признанию Нобелевского комитета. В области физики нейтрино были присуждены три Нобелевские премии – и все намного позже первоначального эксперимента. Первая премия досталась в 1995 году Райнесу спустя десятилетия после их открытия (Коуэн, к сожалению, скончался тринадцатью годами ранее), вторая – Рэю Дэвису и Масатоси Косибе в 2002 году, а третья – Такааки Кадзите и Артуру Макдональду в 2015 году.
Первоначальный поиск нейтрино был мотивирован загадкой бета-распада, и предположение Паули о нейтрино появилось в 1933 году, всего через год после открытия Чедвиком нейтрона. Теперь мы можем объединить эти идеи, чтобы лучше понять, что происходит в атомном ядре во время бета-распада: нейтрон превращается в протон, изменяя тип элемента и высвобождая электрон (чтобы сбалансировать электрический заряд) и нейтрино[208]. Нейтрино уносит часть энергии в ходе этой реакции, разделяя общую доступную энергию с электроном, именно поэтому энергия электронов была непредсказуемой. Ни электрон, ни нейтрино не существуют до распада. Кусочки головоломки начали складываться воедино. Но тут же второй эксперимент снова сбил физиков с толку…
Когда нейтрино было впервые обнаружено в середине 1950-х годов, физики только начинали понимать, что Солнце – это ядерная печь, вырабатывающая свою энергию посредством цепочек термоядерных реакций, называемых протон-протонным циклом или рр-циклом, в несколько этапов превращающим протоны в гелий[209]. Если теории о Солнце верны, огромное количество нейтрино должно вылетать прямо из Солнца почти со скоростью света, достигая Земли где-то через восемь минут[210].
У радиохимика из Брукхейвена Рэя Дэвиса была фора еще за год до первого нейтринного эксперимента Райнеса и Коуэна. Дэвис не искал вспышки света. Он проверял идею, выдвинутую другим теоретиком, Бруно Понтекорво, который предсказал, что нейтрино, взаимодействуя с атомом хлора, приведет к образованию радиоактивного атома аргона. Дэвис специализировался в области радиохимии: если кому и суждено было найти пару отдельных радиоактивных атомов аргона, так это ему.
Эксперимент Дэвиса по обнаружению нейтрино основывался на использовании огромных емкостей с жидкостью для химчистки – дешевой и легкодоступной, содержащей хлор. Он начал с 3800 литров и постепенно повышал емкость. Несмотря на свое преимущество, Дэвис упустил возможность первым обнаружить нейтрино, потому что ядерные реакторы – и бета – распад – на самом деле производят эквивалент частицы из антивещества, антинейтрино, которое и обнаружили Коуэн и Райнес[211]. Эксперимент Дэвиса, однако, был способен улавливать только «обычный» вид нейтрино. Хотя Коуэн и Райнес опередили его, со временем Дэвис переключил свое внимание на обнаружение нейтрино не от реакторов, а от Солнца. Это решение оказалось ключевым: физика нейтрино перестала рассматриваться как любопытный побочный эффект бета-распада и стала полноправной областью исследований физики элементарных частиц.
Дэвис сотрудничал с молодым физиком-теоретиком Джоном Бакалом, который провел сложные расчеты, чтобы предсказать скорость образования солнечных нейтрино. К 1964 году они опубликовали статьи со своими планами. Они были уверены, что смогут улавливать солнечные нейтрино, возможно, по 10 или 20 штук в неделю, но для этого потребуется эксперимент в 100 раз больший, чем их и без того огромная версия, – перспектива настолько амбициозная, что она попала в журнал Time еще до того, как была профинансирована.
В 1965 году в глубине шахты Хоумстейк в Южной Дакоте была вырыта огромная пещера. В ней команда Дэвиса и Бакала соорудила резервуар объемом 380 тысяч литров и наполнила его жидкостью для химчистки, привезенной на 10 железнодорожных вагонах. Благодаря невероятной настойчивости и тщательно проделанной химической работе этот титанический труд окупился. Собрав несколько десятков радиоактивных атомов аргона, Дэвис смог доказать существование солнечных нейтрино. Проблема заключалась в том, что он нашел только примерно треть от того числа нейтрино, которое предсказал Бакал. Они проверили расчеты, но не нашли никаких ошибок. Дэвис вернулся к работе и продолжал собирать данные еще почти 20 лет. Все это время загадка оставалась неразрешенной: наблюдалось странная нехватка солнечных нейтрино.
Проблема солнечных нейтрино поставила вопрос: были ли расчеты неверными? Неужели физики неправильно поняли, как Солнце вырабатывает энергию? Или же тут что-то не так с нейтрино? Неужели Солнце перестало вырабатывать энергию, и мы, напрямую зависящие от нее, в опасности? В конце концов на первый план вышла теория о том, что нейтрино превращались во что-то другое или исчезали между Солнцем и Землей. Идея, что нейтрино ведут себя таким довольно странным образом, была предложена Понтекорво еще в 1957 году[212], но долгое время не воспринималась всерьез. Именно этот вопрос побудил Арта Макдональда и около 100 других сотрудников построить Нейтринную обсерваторию в Садбери (SNO – Sudbury Neutrino Observatory).
Макдональд, родом из Новой Шотландии в Канаде, рано заинтересовался математикой и физикой, а затем получил докторскую степень по ядерной физике в Калтехе в 1969 году. Он оставил профессорскую должность в Принстоне, чтобы вернуться в Канаду в 1989 году и руководить SNO. Под его руководством SNO был построен на глубине более чем в 2 км под землей в никелевой шахте в Онтарио. Этот грандиозный эксперимент под управлением 100 коллег Макдональда проводился с 1999 по 2006 год. Такааки Кадзита провел аналогичный эксперимент под названием «Супер-Камиоканде» в цинковой шахте в Японии. Эти два опыта приведут к получению общей Нобелевской премии по физике в 2015 году.
SNO – это, по сути, огромное подземное стерильное помещение. К счастью, вы можете посетить его виртуально[213], избавив себя от неудобств реального посетителя или ученого, который должен принять душ, переодеться, а затем пройти через воздушный душ, чтобы грязь из шахты не попала в чувствительное оборудование. Внутри все кажется довольно аскетичным: просто голые останки шахты, превращенной в лабораторию. Диспетчерская состоит из пяти компьютерных мониторов на нескольких столах, расположенных рядом с несколькими стеллажами, забитыми оборудованием. Кабельные лотки и трубы уходят высоко вверх по стене. Если бы не порода, можно было бы забыть, что эксперимент проводится на глубине почти в 2000 метров под землей. Табличка на стене напоминает ученым: «Безопасность и качество. Всегда». Посетители могут виртуально пройти из диспетчерской по коридору и через помещение, полное оборудования. Затем они попадают к самому детектору.
Практически подвешенные внутри пустого детектора, вы чувствуете себя так, словно попали в вывернутый наизнанку зеркальный шар. Со всех сторон вас окружают 9600 фотоэлектронных умножителей золотистого цвета. Даже через экран компьютера калейдоскопическая красота гигантской – диаметром 12 метров – геодезической сферы захватывает дух. Мужчина, одетый в синий комбинезон и оранжевую каску и стоящий напротив, кажется почти карликом на фоне установки. Виртуальная экскурсия проводилась, когда детектор был пуст, но обычно все эти золотые детекторы должны были играть роль глаз, вглядывающихся в тысячи тонн тяжелой воды, позаимствованной у канадского парка ядерных реакторов, стоимостью в баснословные 300 млн канадских долларов.
Самая дикая идея оказалась правильной. Существует три типа нейтрино, и все они объясняются нейтринными осцилляциями: то есть нейтрино, рожденное как, скажем, электронное нейтрино, колеблется между своим исходным состоянием и двумя другими типами – мюонными нейтрино и тау-нейтрино. Эксперимент Дэвиса был чувствителен только к электронным нейтрино, поэтому солнечные нейтрино других типов оставались незамеченными, объясняя нехватку двух третей предсказанного количества. Первое доказательство этой идеи пришло от японского детектора Кадзиты «Супер-Камиоканде»[214] в 1998 году, состоящего из 50 000 тонн сверхчистой воды в резервуаре на глубине 1000 метров под землей, где 13 000 фотоэлектронных умножителей отслеживали вспышки света, возникающие непосредственно в результате взаимодействия нейтрино. Результаты Кадзиты подтвердили идею о том, что атмосферные нейтрино, создаваемые космическими лучами, в полете переходят из одного типа в другой. Это все еще не совсем решило проблему солнечных нейтрино, поскольку ученые не рассматривали нейтрино, исходящие от Солнца. Наконец, 18 июня 2001 года Арт Макдональд и команда SNO объявили, что их красивый детектор золотистого цвета продемонстрировал н