Принцип эксперимента. 12 главных открытий физики элементарных частиц — страница 45 из 63

Справедливо будет сказать, что мы еще не готовы использовать нейтрино и, возможно, никогда не будем готовы. Мы не можем предсказать будущее, но что мы можем сказать о нейтрино, так это то, что результат нашего стремления их понять внес косвенный, но глубокий вклад в нашу жизнь. Мы уже видели, что SNO располагалась в глубокой подземной лаборатории в Канаде, которая теперь переименована в SNOLAB. И глубоко под землей – не просто метафора. Находясь на глубине 2100 метров, лаборатория расположена в 20 раз глубже, чем Большой адронный коллайдер, о котором мы поговорим позже. Давление воздуха увеличивается на 20 % по мере того, как вы совершаете шестиминутный спуск в лифте. Найджел Смит, исполнительный директор SNOLAB до 2021 года, сравнивает это путешествие со спуском в самолете, но только в окружении скал.

В подземной лаборатории работают не только физики, изучающие элементарные частицы. Само ее создание открыло возможности многим другим областям науки. Столь глубокое расположение под Землей предоставляет уникальную среду, потому что лаборатория имеет невероятно низкий уровень фонового излучения от космических лучей. Стабильный, чистый подземный объект с таким низким уровнем радиации позволил осуществить широкую исследовательскую программу, направленную на изучение воздействия низких уровней радиации на клетки и организмы. Ни одно наземное животное никогда не жило – или, если уж на то пошло, не эволюционировало – без воздействия фонового излучения космических лучей, а потому эти эксперименты помогают биологам понять, что будет, если это излучение убрать. Это исследование крайне важно, потому что может дать ответ на вопрос о том, всегда ли радиация вредна для клеток и организмов, всегда ли она наносит ущерб или существует какой-то пороговый уровень радиации, который безвреден или, возможно, даже полезен для жизни.

Это могло бы рассказать нам больше о том, влияют ли на эволюцию случайные мутации, вызванные радиацией. Пока результаты, по-видимому, указывают на то, что низкий уровень радиации действительно нужен[219]. Если дальнейшие эксперименты подтвердят эти данные, это будет иметь огромные последствия не только для людей и нашего взаимодействия с радиацией, но и для нашего понимания существования жизни в других частях космоса. Без глубоких подземных лабораторий мы просто не смогли бы провести такое исследование.

SNOLAB также является одним из лучших мест на (или в?) Земле для проведения экспериментов на квантовых компьютерах. Появляются доказательства того, что время декогеренции, то есть время, которое квантовый «бит» может хранить информацию до того, как ее потеряет, может быть ограничено естественным фоновым излучением на поверхности Земли. Возможно, в будущем потребуется запускать квантовые компьютеры под землей. На данный момент, по крайней мере, эти лаборатории предоставляют возможность проводить такие опытно-конструкторские работы.

Нейтрино называли призраком, вестником, космическим кораблем, сгустком пустоты. Начало его жизни было попыткой спасти основной закон физики, и со временем оно привело к огромным достижениям в астрономии, космологии, геологии и нашем самом фундаментальном понимании материи.

Теперь нейтрино – часть Стандартной модели физики элементарных частиц, но некоторые из их свойств – «левосторонность», наличие массы, изменение типа – показали нам, что должна существовать физика, выходящая за рамки Стандартной модели, которая, конечно же, вызывает бесчисленные вопросы. Почему у нейтрино есть масса? Являются ли нейтрино своей собственной античастицей? Одинаковы ли осцилляции нейтрино и антинейтрино, и если нет, то может ли это объяснить, почему мы видим во Вселенной больше вещества, чем антивещества? Оказывается, что нейтрино, каким бы крошечным оно ни было, во Вселенной в миллиард раз больше, чем материи, из которой состоят звезды, галактики и мы сами. Это повело экспериментаторов и теоретиков ко все большим высотам – или, скорее, глубинам, – чтобы разгадать его секреты. По иронии судьбы, доказав работоспособность одного основного закона, нейтрино теперь – один из богатейших источников пробелов в наших знаниях физики. Что еще раз подтверждает, сколь много нам предстоит узнать о Вселенной, частицах и силах.

Глава 10Линейные ускорители: открытие кварков

Вдоль южного побережья Британии в море смотрит ряд гигантских бетонных тарелок, самая большая из которых представляет собой 60-метровую изогнутую стену. Издалека они выглядят как спутниковое или радиооборудование, но время этих технологий тогда еще не пришло. Построенные между 1915 и 1930 годами, эти тщательно продуманные сооружения представляют собой звуковые зеркала, обеспечивающие систему раннего предупреждения о приближении вражеских самолетов к берегу. Идея по своей сути оригинальная: использовать большие параболические тарелки для отражения звуковых волн в фокальную точку, где оператор прислушивается к шуму пропеллера самолета. Однако устройство оказалось довольно неэффективным, и вскоре на смену ему пришла новая техника.

К концу 1920-х годов радиопередатчики и приемники начали широко использоваться, а в 1935 году британский физик Роберт Уотсон-Уотт изобрел систему, которая могла отражать коротковолновые радиосигналы[220] от удаленных движущихся объектов, например кораблей или самолетов, и обнаруживать отраженные волны с помощью антенны, чтобы затем точно определить местоположение объекта. Физик назвал систему «Радиообнаружение и определение дальности», или радар (акроним от английского radio detection and ranging). К 1939 году, когда разразилась Вторая мировая война, вдоль южного и восточного побережий Британии была установлена вереница радиолокационных станций.

Радар значительно превосходил звуковые зеркала, но для полного раскрытия своего потенциала система нуждалась в трех ключевых улучшениях. Во-первых, радар должен работать на еще более короткой длине волны, чтобы иметь возможность обнаруживать небольшие объекты, такие как немецкие подводные лодки, которые регулярно атаковали и топили корабли. В принципе их можно было бы обнаружить высокочастотным радаром, если бы они всплыли. Во-вторых, система также нуждалась в гораздо более мощных радиопередатчиках, чем те, которые были доступны в то время, для покрытия более отдаленных областей. И в-третьих, требовалась радиолокационная система, которую можно было бы установить на истребителях, то есть намного меньше и легче существующих систем. Стремление улучшить радар во время войны привело к огромным достижениям в развитии технологий, от телекоммуникаций до лечения рака. В то же время физики усовершенствовали эти достижения в области радиолокационных технологий, чтобы совершить одно из самых непростых открытий в истории – обнаружить кварки.

На калифорнийском побережье выпускник факультета физики Стэнфордского университета Рассел Вариан и его младший брат, пилот Сигурд Вариан, жили в социал-теософском обществе под названием «Халцион», где работали над собственными идеями в области радиолокационной технологии. Они пытались создать лабораторию в обществе, но работать в изоляции было довольно трудно. В 1937 году братья решили, что им стоит более тесно сотрудничать с Биллом Хансеном, с которым Рассел делил комнату в аспирантуре. Хансен отлично разбирался в радиоволнах. Вместе они заключили сделку с университетом, согласно которой молодые ученые не будут получать никакой зарплаты, но им будет выделяться бюджет в 100 долларов, а сам университет получит половину прибыли от всего, что будет запатентовано в ходе данного предприятия.

Хансен вырос в Калифорнии и с самого раннего возраста интересовался механическими и электрическими игрушками. Выдающийся ученик, особенно в математике, он окончил среднюю школу в четырнадцать лет и два года спустя поступил в Стэнфорд, где сначала изучал инженерное дело, а затем – экспериментальную физику. В аспирантуре Хансен работал над атомной физикой, где и познакомился с коллегой-аспирантом Расселом Варианом. Самого Рассела часто недооценивали из-за его дислексии. К этому времени интерес Хансена заключался не только в генерации радиоволн: он хотел создать ускоритель частиц для электронов.

Хансену пришла в голову идея сконструировать металлическую полость нужных размеров таким образом, чтобы внутри нее могли резонировать электромагнитные волны. Тогда он мог бы послать пучок электронов и использовать электромагнитные волны, колеблющиеся внутри, для ускорения луча. Он назвал свое устройство румбатроном из-за того, как отражались волны. Однако Хансен столкнулся с той же проблемой, что и первооткрыватели радара: ему нужен был источник радиочастотной энергии с длиной волны короче, чем у любого существующего источника.

Хансену и братьям Вариан потребовалось 12 месяцев, чтобы изобрести устройство под названием клистрон. Внутри цилиндрического устройства размером с консервную банку радиосигнал малой мощности подавался на электронный луч, который проходил через ряд полостей, как и предполагал Хансен. Устройство не ускоряло электроны – вместо этого благодаря комбинации резонатора и проходящих электронов создавался резонанс и испускались электромагнитные волны. Результатом было то, что небольшой входной сигнал усиливался энергией электронного пучка, создавая мощные микроволны в диапазоне частот ГГц. Слово «микроволна» не означает, что длина волны крошечная: на самом деле длина волны составляет около 10 см, что примерно в 200 тысяч раз больше, чем видимый свет, который могут воспринимать наши глаза. Это название было принято потому, что производимые волны были короче привычных радиоволн. Эта коротковолновость означала, что клистрон сам по себе маленький и легкий: он весил всего несколько килограммов.

Клистрон еще не был достаточно мощным, чтобы его можно было использовать для радиолокации, но все же это был огромный шаг вперед – первое устройство, работающее в микроволновом диапазоне, к тому же эффективно и стабильно