Принцип эксперимента. 12 главных открытий физики элементарных частиц — страница 53 из 63

К концу двухдневных дебатов Ледерман принял решение: они продолжат работу над Тэватроном. Недавно созданное Министерство энергетики согласовало поэтапный план. Команда Фермилаба должна была продемонстрировать цепочки магнитов, надежно работающих сначала в испытательном зале, а затем в главном туннеле, прежде чем проект будет утвержден.

Руководство проектированием и строительством Тэватрона было очень важной задачей, и Ледерман поручил ее Хелен Эдвардс и Ричу Орру. Орр – физик, родом из Айовы, известен своим спокойным поведением. Он помогал строить мезонную лабораторию и, как и Эдвардс, стал хорошо известен умением объединять людей и двигать их к успеху. Вместе они были отличным дуэтом, знающим, как расставить приоритеты, что оказалось критически важным в проекте такого размера, как Тэватрон.

Испытание магнита прошло без сучка и задоринки. Все было настолько успешно, что решили еще больше разогнать магниты, повысив силу тока до 4000 ампер, чтобы вызвать квенч. Все системы защиты сработали великолепно, выпустив кипящий гелий и защитив магниты. Затем попытались вызвать электрические дуги, но, как позже рассказывал Рич Орр, «сломать магниты просто невозможно». Они были готовы к работе. Производство увеличилось, фабрика магнитов перешла на полную мощность, и рабочие проводили в туннеле чуть ли не круглые сутки, прокладывая трубы и соединения, выполняя электромонтажные работы и устанавливая магнит за магнитом.

К середине июня 1983 года команда Фермилаба запустила луч в кольцо Тэватрона. Две недели спустя, 3 июля, энергия луча достигла 512 ГэВ, что стало новым мировым рекордом. Фермилаб опередил своих европейских соперников, и газеты возвещали о его успехе. Но Эдвардс и Орру предстояло еще более сложное испытание: превратить машину в коллайдер, способный разбивать протонный пучок об антипротонный.

Идеи создания коллайдеров существовали с 1950–1960-х годов[261]. Первый небольшой электронный коллайдер назывался AdA (Anello Di Accumulazione – накопительное кольцо) и был создан во Фраскати, Италия, в 1961 году. ЦЕРН построил первый протонный коллайдер под названием ISR (от англ. Intersecting Storage Rings – пересекающиеся накопительные кольца) в 1971 году, он был способен достигать энергии центра масс в 60 Гэ В. Обладая почти в 40 раз большей энергией, чем у ISR, Тэватрону предстояло сталкивать протоны и антипротоны в масштабах, намного превосходящих те, что были раньше.

Чтобы коллайдер заработал должным образом, требуется много технической изобретательности. Плотность пучка частиц ниже, чем у твердой или жидкой мишени, поэтому пучки должны пересекаться много раз, и в каждом пучке должно быть как можно больше частиц. Как только протоны и антипротоны оказывались в кольце, требовалось около 20 секунд, чтобы разогнать пучки до 1 ТэВ, чтобы затем магниты направили их по пересекающимся траекториям.

Наконец, когда все части сложились воедино, 30 ноября 1986 года[262] столкнулись первые протонные и антипротонные пучки. Физики ускорителей совершили невозможное: запустили крупнейший в мире сверхпроводящий ускоритель. Но там, где заканчивалась их работа, начиналась работа физиков-экспериментаторов.

К началу 1970-х годов многие открытия, которые мы уже видели, были математически сведены воедино, чтобы сформировать одну всеобъемлющую теорию – Стандартную модель физики элементарных частиц. Стандартная модель включает в себя все частицы, которые были открыты, начиная с электрона, мюона, тау и нейтрино, заканчивая кварками и образуемыми ими частицами: протонами, нейтронами вместе с пионами, каонами, резонансными частицами и так далее. Однако оставалось найти еще один кварк – топ-кварк. Ожидалось, что он будет тяжелым, поэтому для его обнаружения потребуются столкновения с максимально возможной энергией. Вот что мотивировало экспериментаторов, построивших Тэватрон.

Международные команды физиков приступили к проведению двух крупных экспериментов, которые включали в себя создание двух огромных детекторов вдоль кольца, где сталкивались лучи Тэватрона. Первая экспериментальная группа построила детектор столкновений, известный как CDF (от англ. Colliding Detector at Fermilab), и выбрала Элвина Толлеструпа и Роя Швиттерса в качестве докладчиков. Сотрудничество началось быстро: физики из Пизанского университета в Италии и Цукубского университета в Японии присоединились к коллегам из примерно 10 американских институтов. CDF представлял собой огромный 4500-тонный многослойный цилиндрический детектор, встроенный в сверхпроводящий соленоид, чья задача – изгибать частицы и определять их импульс. Различные слои детектора чувствительны к различным частицам, что позволило восьмидесяти семи ученым, работавшим над детектором, измерять энергию, заряд и тип частиц, а также создавать цифровые реконструкции осколков от столкновений частиц. Все слои теперь были полностью электронными, поэтому сбор данных и вычисления стали неотъемлемой частью эксперимента. Для создания детектора каждое сотрудничающее учреждение взяло на себя ответственность за разные части детектора, а также за финансовые и технические аспекты его создания и доставки. В конце концов его собрали воедино и в 1986 году начался сбор данных.

После CDF был построен второй детектор, DZero (названный так из-за его расположения в кольце). Команде DZero нужно было кое-что наверстать, но в конечном итоге сотрудничество выросло до размеров, аналогичных CDF, и в итоге обе группы насчитывали несколько сотен человек. Два эксперимента были необходимы для того, чтобы обеспечить независимую проверку любого нового явления. DZero был немного более громоздкий, чем CDF: он весил 5500 тонн и достигал высоты более четырех этажей, со слоями детекторов, похожих на CDF. DZero начал собирать данные в 1992 году.

Эти два невероятных устройства представляли собой новый тип детектора частиц, который окружал экспериментальную установку. Детекторы были настолько сложными и дорогостоящими, что их нельзя было демонтировать в конце эксперимента, как бывало раньше. Вместо этого они должны были стать многоцелевыми и оставаться на месте. Были заявлены беспрецедентные масштабы экспериментов, которые физики планировали провести на этом новом коллайдере, – они могли длиться дольше, чем того требует получение докторской степени или постоянная преподавательская работа. Даже руководитель экспериментов брал бразды правления в свои руки лишь на некоторое время, а затем передавал их другому коллеге. Это была уже не просто Большая наука – это была меганаука. Из национальной лаборатории Фермилаб превратился в по-настоящему международную, а к программе продолжали присоединяться исследователи из многих уголков мира.

Два эксперимента должны были обеспечить независимую проверку любого нового явления. К концу 1993 года обе команды осторожно начали говорить о доказательствах существования шестого кварка, топ-кварка, но им требовалось больше времени и больше данных, чтобы соблюсти уровень статистической значимости в 5 сигм. Наконец, в 1995 году обе команды объявили об открытии топ-кварка. Последняя частица Стандартной модели найдена – безусловно, самая тяжелая элементарная частица. Топ-кварк весит больше, чем атом золота, несмотря на то что он является точечной частицей, как и электрон. Время его жизни составляет всего полутриллионную триллионной доли секунды (5 × 10–25 секунд), после чего он распадается на следующий тяжелый кварк, боттом-кварк[263]. Топ-кварк настолько недолговечен, что у него нет времени объединяться с другими кварками, поэтому, в отличие от других кварков, которые всегда объединяются, топ-кварк проводит свою невероятно короткую жизнь в одиночестве. И вот двадцатилетнее путешествие с момента открытия b-кварка в 1970-х годах в ипсилоне привело к знаменательному открытию его партнера – t-кварка, и это достижение попало в заголовки газет по всему миру.

Трудно переоценить сложность нахождения такой частицы, как топ-кварк, поскольку вероятность встретить его среди обломков столкновения частиц невероятно мала. Для этого физики-экспериментаторы должны были быть экспертами не только в практических экспериментах, но и в статистике и вычислительных методах. Это был совершенно иной набор навыков, чем у их коллег всего двадцатью годами ранее. В значительной степени виной тому то, что взаимодействия частиц вероятностны по своей природе, как диктует квантовая механика. Не все в эксперименте можно рассчитать вручную, и не было смысла проводить эксперимент, не способный найти топ-кварк или другие частицы и процессы, которые искали ученые, поэтому подготовка была необходима. Так как же все просчитать? Используя компьютерное моделирование, физики могут ввести всю известную теоретическую информацию и соответствующие вероятности, а затем использовать подход, известный как метод Монте-Карло, чтобы получить обзор статистических результатов эксперимента.

Название этого метода происходит от знаменитого «ложного вывода Монте-Карло», или ошибки игрока, в основе которого лежит идея о том, что, хотя одно событие может быть непредсказуемым, исход многих событий можно определить. История выглядит так.

В 1913 году в казино Монте-Карло в Монако шарик рулетки выпал на черное 26 раз подряд. Вероятность того, что это произойдет, составляет один к 66,6 миллиона, но вероятность выпадения черного при каждом вращении всегда одинакова – 50 %. С каждым новым вращением игроки считали, что в следующий раз наверняка выпадет красное. По мере того как количество вращений, выпадающих на черное, увеличивалось с 8, 9, 10 и более, они были настолько уверены, что на следующем вращении должно выпасть красное, что ставили миллионы франков. И все теряли. Единственный гарантированный способ не потерять деньги, делая ставки на такого рода статистические игры, – это продолжать увеличивать свою ставку каждый раз, когда вы проигрываете, так что при выигрыше вы возместите свои предыдущие потери. Это не только психологически чрезвычайно сложно, но и обычно не допускается в казино, поэтому размер ставки ограничивается и казино выигрывает.