PRO Антиматерию — страница 27 из 30

Мы хорошо понимаем, как материя в том виде, в котором мы ее знаем сегодня, сформировалась и развивалась на протяжении 14 миллиардов лет после Большого взрыва. Ирония заключается в том, что мы многое об этом узнали, используя антипротоны и позитроны как инструменты, помогающие нам вернуться назад во времени и посмотреть, как сотворялась материя. Если бы в космосе антипротоны и позитроны имелись в большом количестве, они легко могли бы сформировать антизвезды, космические кухни которых приготовили бы ингредиенты для формирования антиэлементов. Посыл состоит в том, что материя и антиматерия формировались соответствующими друг другу парами. Тем не менее выжить смогла только материя. Где-то в первые моменты существования Вселенной, ранее, чем в миллиардную долю секунды, возник дисбаланс между материей и антиматерией.

Нейтрино

Мы уже говорили об асимметрии между материей и антиматерией и о том, что это естественно для Вселенной. Но при изучении странных частиц это стало сенсацией. Однако, чем больше собиралось данных, становилось все более ясно, что явления, включающие кварки и антикварки, не могут объяснить количественное полное доминирование материи во Вселенной сегодня. В последнее время ученые обратили внимание на лептоны и нейтрино.

Название «лептоны» происходит от греческого слова, означающего «легкий». Название появилось в 1948 году и было выбрано, потому что все известные в то время лептоны были значительно легче тяжелых частиц, входящих в класс барионов, название которых происходит от греческого слова «тяжелый». Сейчас это уже не вполне соответствует реальному положению дел, поскольку открытый в 1977 году тау-лептон примерно в два раза тяжелее самых легких барионов. Лептоны – это элементарные частицы с полуцелым спином, не участвующие в сильном взаимодействии. Лептоны вместе с кварками (которые участвуют во всех четырех взаимодействиях, включая сильное) составляют класс фундаментальных фермионов – частиц, из которых состоит вещество и у которых, насколько нам известно, отсутствует внутренняя структура.

Несмотря на то что до сих пор никаких экспериментальных указаний на неточечную структуру лептонов не обнаружено, делаются попытки построить теории, в которых лептоны и кварки были бы составными объектами. Рабочее название для гипотетических частиц, составляющих кварки и лептоны, – преоны, и мы их уже упоминали. Существует три поколения лептонов: электрон и электронное нейтрино (первое поколение); мюон и мюонное нейтрино (второе поколение); тау-лептон и тау-нейтрино (третье поколение) и, конечно, соответствующие античастицы. Таким образом, получается, что в каждое поколение входит отрицательно заряженный лептон, положительно заряженный антилептон и нейтральные нейтрино и антинейтрино. Все они обладают ненулевой массой, хотя масса нейтрино весьма мала по сравнению с массами других элементарных частиц. Каждому заряженному лептону (электрон, мюон, тау-лептон) соответствует легкий нейтральный лептон – нейтрино. Ранее считалось, что каждое поколение лептонов обладает своим так называемым флейворным лептонным зарядом – то есть лептон может возникнуть только вместе с антилептоном из своего поколения, так, чтобы разность количества лептонов и антилептонов каждого поколения в замкнутой системе была постоянной. Эта разность называется электронным, мюонным или тау-лептонным числом, в зависимости от рассматриваемого поколения. Лептонное число лептона равно +1, антилептона –1.

С открытием осцилляций нейтрино было обнаружено, что это правило нарушается: электронное нейтрино может превратиться в мюонное или тау-нейтрино. Таким образом, флейворное лептонное число не сохраняется. Однако процессов, в которых не сохранялось бы общее лептонное число (не зависящее от поколения), пока не обнаружено. Закон сохранения лептонного числа является экспериментальным фактом и пока не имеет общепринятого теоретического обоснования.

Слово «нейтрино» происходит от итальянского, которое можно перевести как «нейтрончик», это уменьшительное от «нейтрон». Это стабильная незаряженная элементарная частица, долго считалось, что это частица с нулевой массой, теперь признано, что – с очень малой. Нейтрино участвуют только в слабом и гравитационном взаимодействиях и поэтому чрезвычайно слабо взаимодействуют с веществом. Различают электронное нейтрино, всегда выступающее в паре с электроном или позитроном, мюонное нейтрино в паре с мюоном, и тау-нейтрино, связанное с тяжелым лептоном. Каждый тип нейтрино имеет свою античастицу, отличающуюся от нейтрино знаком соответствующего лептонного заряда и спиральностью. Нейтрино имеют левую спиральность (спин направлен против движения частицы), а антинейтрино – правую (спин направлен по направлению движения). Одним из перспективных направлений использования нейтрино является нейтринная астрономия, так как звезды кроме света излучают значительный поток нейтрино, которые возникают в процессе ядерных реакций. Поскольку на поздних стадиях звездной эволюции за счет нейтрино уносится до 90 % излучаемой энергии, то изучение свойств нейтрино помогает лучше понять динамику астрофизических процессов. Кроме того, нейтрино без поглощения проходят огромные расстояния, что позволяет обнаруживать и изучать еще более удаленные астрономические объекты. Еще одним практическим применением является развиваемая в последнее время нейтринная диагностика промышленных ядерных реакторов. В ряде стран ведутся работы по созданию нейтринных детекторов, способных в режиме реального времени измерять нейтринный спектр реактора и тем самым контролировать как мощность реактора, так и композитный состав топлива. Теоретически потоки нейтрино могут быть использованы для создания средств связи, что привлекает интерес военных: частица теоретически делает возможной связь с подводными лодками, находящимися на глубине, или передачу информации сквозь Землю. Нейтрино, образующиеся в результате распада радиоактивных элементов внутри Земли, могут использоваться для изучения внутреннего состава Земли. Измеряя потоки геологических нейтрино в разных точках Земли, можно составить карту источников радиоактивного тепловыделения внутри Земли.

То есть у нейтрино нет электрического заряда, очень малая масса, они могут проходить сквозь Землю, как пуля сквозь туман, и они до сих пор остаются такими таинственными, что через полвека после их открытия мы все еще знаем о них меньше, чем о других частицах. Тем не менее в последние годы ученые стали подозревать, что именно они скрывают тайну отсутствия антиматерии во Вселенной.

Нейтрино – это материя или антиматерия? У них нет электрического заряда, как у протона или Z0, но в отличие от этих бозонов, которые не являются ни материей, ни антиматерией, нейтрино – это фермион, а это означает, что к нему применимо уравнение Дирака и он имеет отношение к материи или антиматерии. Так что отличает нейтральный нейтрино от нейтрального антинейтрино?

В отличие от нейтрона и антинейтрона, которые отличаются внутренним строением из кварков или антикварков, у нейтрино нет внутренней структуры. Это блуждающий кусочек кружащегося ничего, который движется сквозь пространство почти со скоростью света. Легкое вращение – это почти все, что делает нейтрино, но этого достаточно, чтобы решить загадку материи или антиматерии. Квантовая теория также подразумевает, что нейтрино могут мгновенно превращаться в электрон и W+, а антинейтрино могут аналогично превращаться в позитрон и W. Это позволило бы их различать – если бы мы могли это наблюдать практически, но наши возможности пока этого не позволяют. На протяжении 50 лет указанное вращение использовалось для того, чтобы отличать нейтрино, материю, от антинейтрино, антиматерии. Но в последние годы появилась теория, утверждающая, что в то время как фотоны (и другие бозоны) – это и не материя, и не антиматерия, тяжелые типы нейтрино – это и то и другое! Если такие странные вещи формировались в котле Большого взрыва, то их «потомство» сегодня должно быть в неравной степени распределено между тем, что мы называем материей и антиматерией.

Так откуда взялись нейтрино? Их производят некоторые формы радиоактивности. Когда протон в ядре превращается в нейтрон, изменение энергии материализуется как позитрон и нейтрино. Электрический заряд и общее число фермионов (под этим общим числом имеется в виду количество фермионов материи минус фермионы антиматерии) сохраняется. Вначале был один положительный заряд, который нес в себе протон, и в конце тоже имеется один положительный заряд. Общее число фермионов сохраняется, поскольку позитрон антиматерии уравновешивается нейтрино материи. И наоборот, когда нейтрон распадается, оставляя протон, появляются электрон и антинейтрино.

Если в дальнейшем нейтрино или антинейтрино столкнутся с материей, то выдадут себя, запустив обратный процесс. Нейтрино превращает нейтрон в протон, сопровождаемый электроном. Антинейтрино превращает протон в нейтрон, сопровождаемый позитроном.

Нейтрино могут вращаться, как электроны. Как мы знаем, у электронов есть электрический заряд, а благодаря своему спину они напоминают маленькие магниты. В своем полете они ориентируются или на Северный, или на Южный полюс. Мы можем представить это в виде штопора, который можно вращать в одну или другую сторону – вправо или влево, против часовой стрелки или по часовой. У нейтрино нет электрического заряда, но к нему применимо то, что мы сказали про спин – вращение может совершаться как по часовой стрелке, так и против.

В экспериментах, проводившихся на протяжении свыше 50 лет, казалось, что нейтрино вращается только по часовой стрелке, в то время как антинейтрино – наоборот. Это подобно стрелкам будильника – если мы посмотрим на их ход в зеркале, то покажется, что они идут вспять. Если мы посмотрим на нейтрино в зеркале, он поменяется на антинейтрино? Вначале нужно задать вопрос: а как нам узнать, нейтрино это или антинейтрино, кроме как по направлению вращения? Есть ли еще какой-то показатель, помогающий идентифицировать нейтрино как частицу, а антинейтрино как античастицу? Если такого показателя нет, то остается одно направление вращения. Или все-таки есть?