Pro темную материю — страница 24 из 29

После высказанного Пачинским предложения две группы ученых в разных частях света начали поиск эффектов микролинзирования звезд в Большом Магеллановом Облаке темными телами гало Млечного Пути. Одна группа работала в Австралии, в обсерватории Маунт Стромло. В распоряжении ученых был телескоп с зеркалом, диаметр которого составлял 1,27 м, и панорамным фотоэлектрическим приемником, который позволяет одновременно регистрировать и анализировать с помощью компьютера блеск около миллиона звезд. Другая группа работала в Чили на широкоугольном 50-сантиметровом телескопе вначале с помощью фотографической методики, а затем с панорамным фотоэлектрическим приемником излучения. Обе группы наблюдали несколько миллионов звезд на протяжении двух лет и практически одновременно опубликовали первые результаты наблюдений явлений микролинзирования звезд в Большом Магеллановом Облаке темными телами гало Млечного Пути. Оказалось, что блеск трех звезд в Большом Магеллановом Облаке испытал резкий (примерно от трех до шести раз) подъем и спад. Кривые блеска не зависели от длины волны, были строго симметричны и имели характерную продолжительность изменений блеска около одного месяца. То есть уже первые результаты наблюдений явлений микролинзирования показали, что одной из составляющих скрытой массы являются маломассивные звезды.

Было высказано предположение, что это, скорее всего, коричневые карлики. Количество таких маломассивных звезд в нашей галактике получилось гораздо большим, чем предсказывала общепринятая теория происхождения и эволюции звезд. Соответственно, перед учеными встала новая серьезная проблема. Для корректной оценки доли темной материи или скрытой массы, сосредоточенной в таких маломассивных звездах, следовало увеличить число наблюдений явлений микролинзирования, причем не только в направлении Большого Магелланова Облака, но и в других, чтобы лучше оценить пространственное распределение темных тел в галактике.

И наблюдения были продолжены, наиболее активно этим занимались американцы и поляки. Может, это совпадение, а может, сыграла роль национальность Пачинского. К настоящему времени можно говорить о более чем 50 (по сравнению с первыми тремя) обнаруженными явлениями микролинзирования. Анализ результатов наблюдений звезд Большого Магелланова Облака позволяет сделать вывод, что, по крайней мере, половина скрытой массы в виде барионов обязана своим происхождением вкладу маломассивных звезд, то есть с массой от 0,1 до 0,5 массы Солнца, и коричневых карликов. Из чего состоит другая часть барионной компоненты скрытой массы и какова природа ее небарионной составляющей, пока остается загадкой.

Следует отметить, что открытия, сделанные в этой области к сегодняшнему дню, были совершены на небольших наземных телескопах с использованием простых и относительно недорогих средств (фотоэлектрических панорамных приемников и мощных компьютеров). Более того, обнаружены не только эффекты микролинзирования, но и получены высокоточные кривые блеска многих десятков тысяч переменных звезд разных типов. А это – важный вклад не только в проблему скрытой массы, но и в проблему изучения переменных звезд. И все благодаря остроумной идее Пачинского.

В результате точно выявлена, по крайней мере, одна составляющая темной материи или скрытой массы – маломассивные звезды, белые карлики и возможные коричневые карлики, которых оказалось очень много в гало Млечного Пути, много больше, чем до сих пор предсказывалось теорией эволюции звезд. А это – прорыв в науке.

Сильное и слабое гравитационное линзирование

Дэвид Шрамм, считающийся одним из лучших специалистов по теории Большого взрыва, вместе со своими студентами занимался изучением открытого космоса и, в частности, обнаружил, что дейтерий, или тяжелый водород (изотоп водорода, в ядре которого имеется один нейтрон и один протон), мог только разрушаться в звездах, но не создаваться (как могут другие элементы). Поэтому весь дейтерий, который имеется во Вселенной на сегодняшний день, должен был присутствовать и в ранней Вселенной, и можно сделать вывод, что имеющееся сегодня количество дейтерия – это в лучшем случае то его количество из ранней Вселенной. Проведя дополнительные расчеты, можно выяснить, насколько плотной в плане барионов была ранняя Вселенная, чтобы это максимальное количество дейтерия сохранилось с тех времен. Чем плотнее барионная материя, тем сильнее падение «выживаемости» дейтерия. Проведенный анализ показал потолок плотности барионной материи.


Дэвид Шрамм, американский астрофизик (1945–1997)


Шрамм назвал дейтерий «бариометром». Рассуждая аналогичным образом и проведя соответствующие расчеты, можно получить низшее возможное значение для барионной материи. Гелий-3 (два протона плюс нейтрон) мог только создаваться в звездах, а не разрушаться. Соответственно, нынешнее его количество – это, по крайней мере, количество из ранней Вселенной. Какой должна была быть плотность барионов в ранней Вселенной, чтобы выжило это минимальное количество гелия-3? Отсюда получается низшее значение плотности барионной материи.

Используя физику частиц для установления верхней и нижней границ плотности барионной материи во Вселенной, Шрамм определил значение омеги для барионной материи – около 0,1. Но это значение ничего не говорило о небарионной материи, как, впрочем, ничего не было сказано и о значении омеги для общего количества материи.

«Взвешивание» Вселенной на различных весах давало омегу в районе 0,2, возможно, выше. Одно это расхождение (0,1 барионной материи против 0,2 общего количества материи) являлось доказательством существования небарионной материи. В теории Большого взрыва эта материя могла иметь только один источник – тот же самый, что протоны, нейтроны, фотоны и все остальное во Вселенной: первичная плазма.

Если специалисты, занимающиеся физикой частиц, и не знали, что это, они знали, что, как и все остальные частицы, эти должны были идти потоком через Вселенную с первой секунды ее существования и должны были быть или быстрыми, или медленными. Легкие частицы, которые двигались на скоростях, приближающихся к скорости света, назвали горячей темной материей. Более тяжелые частицы и, соответственно, более медленные, которые прикреплялись к галактикам и двигались на той же скорости, что звезды и газ, назвали холодной темной материей. Но два вида темной материи – горячая или холодная – давали два противоположных эволюционных сценария Вселенной. При горячей темной материи сценарий развивался «от сложного к простому». При холодной темной материи, наоборот, «от простого к сложному».

Проводившиеся в начале 1980-х годов наблюдения показали, что наша галактика, Млечный Путь, является частью местного сверхскопления галактик, а сверхскопления разделены огромными пустотами. Это подтверждало модель с холодной темной материей, и к середине десятилетия большинство ученых склонялись к этому варианту. Затем, с конца 1980-х годов, ученые стали использовать красное смещение для составления карт Вселенной. В период с 1997 по 2002 год были представлены карты 221000 галактик. К настоящему времени мы можем говорить о картах уже порядка 900000 галактик. И во время этих наблюдений ученые обнаружили, что чем дальше во Вселенную они заглядывают (то есть чем дальше назад во времени), тем меньше сложности они видят. Проще говоря, чем ближе к настоящему времени, тем сложнее картина.

Первыми сформировались галактики при красном смещении от 9 до 12 млрд лет назад. Затем эти галактики собрались в скопления, при красном смещении меньше 6 млрд лет назад. А сегодня (в космическом смысле) эти скопления собираются в сверхскопления. То есть вначале материя собиралась в малые структуры, а эти малые структуры продолжали собираться вместе. Очевидно, что история Вселенной шла от простого к сложному, то есть это соответствует модели холодной темной материи.

В результате проводившихся наблюдений на карты наносились источники света. Они показывали, где находятся галактики, а ученым приходилось делать умозаключения по поводу того, где находится темная материя. В 2006 году проводился Обзор Эволюции Космоса (проект получил сокращенное название COSMOS – от англ. Cosmic Evolution Survey), в результате которого была выпущена карта темной материи. Участники проекта изучали результаты работы телескопа «Хаббл» – 575 полученных снимков тех случаев, когда две галактики или два скопления галактик выстраивались одна (одно) за другой (другим). Как и в случае применения техники микролинзирования для выявления несветящихся тел MACHO, здесь также полагались на концентрацию массы, искажающую свет от более далекого источника. Использовалось слабое гравитационное линзирование, которое связано с распределением масс во Вселенной.

В основе любого линзирования лежит эффект искривления пространства вблизи массивного тела, а следовательно, и эффект искривления световых лучей. Хотите представить, что происходит? Возьмите кусок ткани, натяните его на жесткую рамку. В отсутствие массивного тела на этой поверхности она останется ровной и плоской, в случае же появления массивного тела поверхность деформируется, искривляясь под его весом.

Различают сильное и слабое гравитационное линзирование. Главная ценность любого линзирования состоит в том, что оно позволяет собрать данные не только и не столько о наблюдаемом объекте, изображение которого искажается линзой, сколько о самой «линзе», ее свойствах и параметрах. При слабом линза только искажает форму и видимые положения удаленных объектов. При сильном линзировании влияние линзы настолько велико, что изображение наблюдаемого объекта расщепляется на несколько изображений, они образуют кольца, дуги и другие более сложные фигуры. Имея изображение, полученное в результате сильного линзирования, можно восстановить массу центральной части «линзы», а следовательно, если в качестве линзы используется скопление галактик, мы получим массу центральной части скопления. По слабому линзированию мы можем с определенной степенью достоверности оценить форму (вытянутость) удаленных источников, линзируемых скоплением галактик, и из этого получить пространственное распределение массы «линзы». Результаты оценки массы линзирующих галактик и их скоплений сами по себе представляют интерес для внегалактической астрономии, но самое главное – это возможность использовать полученные результаты для решения проблемы темной материи.