Pro темную материю — страница 26 из 29

Следующий кандидат – нейтрино, название которого происходит от итальянского слова, которое можно перевести как «нейтрончик», то есть маленький нейтрон. Это стабильная незаряженная элементарная частица с очень малой массой, долго считалось, что с нулевой. Нейтрино очень слабо взаимодействуют с любой материей. Нейтрино, в отличие от аксиона, не гипотетическая частица. Считается, что звезды, кроме света, излучают большой поток нейтрино, а на поздней стадии эволюции звезды за счет нейтрино уносится до 90 % излучаемой энергии.

Подробно про нейтрино я рассказывал в книге «Pro антиматерию» («Страта», СПб, 2015). Здесь я хочу только упомянуть основные направления исследований в области нейтринной астрофизики, проводимые в настоящее время. Это исследование внутреннего строения Солнца, исследование гравитационного коллапса массивных звезд, поиск темной материи. Также ведется поиск нейтрино, идущих от объектов, в которых происходит ускорение космических лучей, таких как бинарные звездные системы, туманности, образовавшиеся после взрыва сверхновых звезд, ядра активных галактик, источники гамма-всплесков. Ведется поиск нейтрино из недр Земли и исследование темпа формирования массивных звезд в ранние эпохи по диффузному потоку нейтрино от всех гравитационных коллапсов.

В июне 2005 года было решено объединить самые крупные детекторы нейтрино на четырех континентах с целью впервые дать заблаговременный и, главное, достоверный прогноз вспышкам сверхновых в нашей галактике. Детекторы соединили в единую сеть, получившую название SNEWS (SuperNova Early Warning System – система раннего оповещения о сверхновых). Результаты круглосуточного мониторинга направляются на центральный компьютер, расположенный в Брукхейвенской национальной лаборатории в США.

К гипотетическим частицам относится нейтралино, являющаяся кандидатом на роль составляющей холодной темной материи. Напомню про суперсимметрию, предложенную рядом теоретиков: поскольку частицы бывают двух типов, бозоны и фермионы, которые соответственно могут или не могут занимать одно и то же квантовое пространство, между бозонами и фермионами должна существовать суперсимметрия.

В соответствии с теорией суперсимметрии у каждой частицы стандартной модели есть так называемый суперпартнер (или суперпартнеры), чей спин на ½ отличается от собственного спина частицы. Поэтому частицам с полуцелым спином, фермионам, соответствуют суперпартнеры с целым спином, бозоны, а суперпартнерами бозонов являются фермионы. Суперчастицы могут распадаться, но самая легкая из них обязана быть стабильной. Именно ее считают лучшим кандидатом на роль частицы темной материи и пытаются зарегистрировать в большинстве экспериментов. То есть у каждого бозона есть партнер-фермион. У фотона есть фотино, а у нейтрино должен быть нейтралино. Частица нейтралино стабильна, участвует в слабом и гравитационном взаимодействии. Суперпартнеры Z-бозона, фотона и бозона Хиггса (соответственно зино, фотино и хиггсино) имеют одинаковые квантовые числа, они смешиваются и образуют собственные состояния массового оператора, эти состояния и называются нейтралино. Свойства нейтралино зависят от того, какая из составляющих (зино, фотино, хиггсино) доминирует. Из всех теоретически мыслимых версий частицы темной материи ученые предпочитают нейтралино, являющуюся квантовой смесью суперпартнеров фотона, Z-бозона и бозона Хиггса.

Теоретики уже давно пытаются предсказать, сколько этих нейтралино должно было выжить до наших дней, а также массу нейтралино. Когда два этих числа сложили, получилось практически то количество темной материи, которое, по разным оценкам, существует во Вселенной. Физикам также понравилось, что нейтралино никто не изобретал специально для решения проблемы темой материи. Нейтралино «там» есть, а его возможная связь с темной материей – это просто «бонус». Нейтралино – это вимп, о которых я тоже говорил выше. Вимп не взаимодействует через электромагнетизм, а это означает, что мы его не увидим ни на одной длине волны, и редко взаимодействует с атомным ядром. Нейтралино пытаются обнаружить уже с конца 1980-х годов, и особенно активно с 2003 года. Считается что эта частица – «любимчик» у физиков именно благодаря указанным в начале этого абзаца расчетам. Вес нейтралино должен быть в 50, а то и 100 раз меньше массы протона. Но после многих лет экспериментов с нулевым результатом многие склонились в сторону аксиона, назвав его кандидатом номер один.

Гравитон – это гипотетическая элементарная частица без массы, переносчик гравитационного взаимодействия без электрического и других зарядов. Гипотеза о существовании гравитонов появилась благодаря квантовой теории поля и моделированию поведения остальных фундаментальных взаимодействий с помощью подобных частиц: фотоны в электромагнитном взаимодействии, глюоны в сильном, бозоны в слабом. Аналогично за гравитационное взаимодействие должна отвечать некая элементарная частица. Термин был предложен в 1930-х годах, считается, что его авторы русские ученые Д. Блохинцев и Ф. Гальперин. Нельзя исключать, что гравитоны являются квазичастицами, удобными для описания слабых гравитационных полей в масштабах длины и времени, которые существенно больше планковской длины и планковского времени, но непригодными для описания сильных полей и процессов с характерными масштабами, близкими к планковским. В теориях супергравитации вводится гравитино – суперпартнер гравитона, как нейтралино у нейтрона.

Как ищут вимпы? Используются прямые и косвенные методы. Прямой поиск – это выявление их столкновений с ядрами обычной материи, служащей рабочим телом детектора. Считается, что в 1 м3 пространства вблизи земной поверхности содержится от нескольких сотен до нескольких тысяч вимпов. При столкновениях они теряют часть кинетической энергии и отдают ее детектору. Подобные столкновения происходят всего несколько раз в сутки, выделяемая энергия очень мала, но их можно зарегистрировать и отделить от столкновений с космическими лучами и земными радионуклидами. При отскоке ядра могут излучаться кванты света, которые уловят фотоумножители. При столкновении с вимпом атом может превратиться в ион, потерять часть электронов, которые можно детектировать.

Если в качестве рабочего тела используется материя в твердом состоянии, столкновения возбуждают колебания кристаллической решетки, и их тоже можно отследить. В реальных экспериментах три указанных выше способа можно скомбинировать. Самыми чувствительными детекторами вимпов являются установки на жидком ксеноне. В них используется комбинированный подход. Косвенный поиск темной материи обычно направлен на регистрацию гамма-квантов, которые могут родиться при столкновениях вимпов в дальнем космосе и, например, внутри Солнца. Поскольку природа вимпов неизвестна, пока никто в точности не знает, что нужно искать и как интерпретировать полученные результаты.

Ведется и поиск виспов, в первую очередь аксиона, о чем я уже упоминал выше. Эту легкую стабильную незаряженную частицу, теоретически предсказанную в рамках квантовой хромодинамики для объяснения отсутствия нарушения CP-симметрии, сложно обнаружить, но в сильных магнитных полях аксион может индуцировать возникновение фотонов. Именно этот эффект и используется в экспериментах по поиску аксионов, которые условно можно назвать «свет сквозь стену». Во время экспериментов лазерное излучение направляется на непрозрачную стенку, перед и за которой установлены сверхпроводящие магниты, генерирующие мощное магнитное поле. Существует вероятность, что фотон в сильном магнитном поле перед стенкой превратится в аксион, который пройдет сквозь преграду, а затем снова в фотон, который уже можно обнаружить с помощью очень чувствительных детекторов.

Возможно, поиск не очень успешен, так как для этого не хватает денежных средств, в особенности во время экономического кризиса. Если аксион и существует, его можно зарегистрировать лишь в очень сильных магнитных полях, где он превращает виртуальные фотоны в реальные. Для этого отлично подошли бы 18-тесловые магниты, которые уже есть на рынке и используются, еще лучше – экспериментальные 32-тесловые. Они стоят больших денег, а их не так просто получить. Те, кто в США финансирует эту область физики, не слишком верят в существование аксионов, считая, что есть гораздо более важные проекты, а в других странах ими практически не занимаются.

Южный полюс

А теперь перенесемся на континент самого юга Земли, в Антарктиду. Центр Антарктиды примерно совпадает с южным географическим полюсом. 21 июля 1983 года в Восточной Антарктиде на советской антарктической станции «Восток» была зарегистрирована самая низкая температура воздуха на Земле за всю историю метеорологических измерений: 89,2 °C ниже нуля. Район считается полюсом холода Земли.

9 декабря 2013 года на конференции Американского Географического Союза группа американских исследователей сообщила о том, что 10 августа 2010 года температура воздуха в одной из точек Антарктиды опускалась до –93,2 °C (–135,8 ° Ф). Данные были получены в результате анализа переданной со спутника НАСА информации. Однако это значение не было зарегистрировано в качестве рекордного, поскольку определено в результате спутниковых измерений, а не с помощью термометра. Средние температуры зимних месяцев (в Антарктиде это июнь, июль и август) – от –75 до –60 °C, а летних – от –50 до –30 °C; на побережье зимой от –35 до –8 °C, а летом 0–5 °C. Помимо полюса холода, в Антарктиде располагаются точки самой низкой относительной влажности воздуха, там дует самый сильный и продолжительный ветер и зафиксирована самая интенсивная солнечная радиация. Это самый высокий континент на планете Земля, средняя высота поверхности континента над уровнем моря составляет более 2000 м, а в центре континента достигает 4000 метров. На тихоокеанском побережье расположены горы Антарктические Анды, их высота превышает 4000 м; самая высокая точка континента – 4892 м над уровнем моря в горах Элсуорт. Сам полюс находится на высоте немного выше 2800 м, причем 2700 из них всегда покрыты льдом. Антарктида отличается крайне суровым холодным климатом.