Pro время — страница 17 из 24

Кризис большого взрыва

Что же можно сказать о времени до начала Вселенной? Возникло ли время вместе с нашим миром – или существовало «всегда»? Сегодня в среде физиков-теоретиков все больше кристаллизуется точка зрения, что время в сверхплотном состоянии космологической сингулярности принципиально меняет свои свойства. При рождении новых вселенных из вакуумной пены происходит формирование физических законов и изменение всех физических параметров, включая размерности пространства и времени.


Спираль времени


Общая теория относительности подразумевает конечность бытия – расширяющаяся Вселенная должна была возникнуть в результате Большого взрыва. Мы знаем, что живем в расширяющейся Вселенной. Так называемая стандартная модель, доминирующая в современной космологии, утверждает, что если бы мы двигались вспять по времени, то пришли бы к сингулярности – точке, которая содержит все вещество и всю энергию Вселенной. Однако стандартная модель не позволяет нам описать эту сингулярность потому, что законы физики неприменимы к точке, соответствующей бесконечно большой плотности вещества и энергии. Неудивительно, что патриарх современной космологии Джон Уилер утверждал, что Большой взрыв ставит нас перед лицом «величайшего кризиса в физике». Можем ли мы воспринимать Большой взрыв как реальное событие и как можно примирить это событие с законами природы, обратимыми во времени и детерминистическими? Мы снова возвращаемся к проблемам измерения и необратимости, но теперь – в космологическом контексте. Однако в самом начале Большого взрыва теория относительности не действовала, поскольку все происходившие в тот момент процессы носили квантовый характер.

В теории струн, которая претендует на звание квантовой теории гравитации, вводится новая фундаментальная физическая постоянная – минимальный квант длины. В результате старый сценарий Вселенной, рожденной в Большом взрыве, становится несостоятельным. Большой взрыв все же имел место, но плотность материи в тот момент не была бесконечной, а Вселенная, возможно, существовала и до него. Симметрия теории струн предполагает, что у времени нет ни начала, ни конца. Вселенная могла возникнуть почти пустой и сформироваться к моменту Большого взрыва или пройти несколько циклов гибели и возрождения. В любом случае эпоха до Большого взрыва оказала огромное влияние на современный космос. Еще древние греки ожесточенно спорили о происхождении времени. Аристотель отвергал идею о наличии некоего начала, объясняя это тем, что из ничего ничто не возникает. А поскольку Вселенная не могла возникнуть из небытия, значит, она существовала всегда. Таким образом, время должно бесконечно простираться в прошлое и в будущее.

Если мы будем просматривать космическую историю в обратном порядке, то увидим, как все галактики будто проваливаются в черную дыру и сжимаются в единственную бесконечно малую точку – сингулярность. При этом плотность материи, ее температура и кривизна пространства – времени обращаются в бесконечность. На сингулярности наша космическая родословная обрывается и дальше в прошлое простираться не может. Условия вблизи нулевого момента времени, соответствующего началу Большого взрыва, настолько экстремальны, что никто пока не знает, как решать соответствующие уравнения.

В ньютоновской физике, даже расшифрованной квантовой механикой, пространство и время заданы раз и навсегда. Кроме того, существует универсальное время, общее для всех наблюдателей. В теории относительности это не так; пространство и время становятся частью картины. Какие последствия имеет это обстоятельство для нашей собственной интерпретации? В одной из своих последних книг «О времени» видный теоретик Пол Дэвис так комментирует влияние теории относительности:

«Самое деление времени на прошлое, настоящее и будущее представляется лишенным физического смысла».

Дэвис повторяет знаменитое высказывание Германа Минковского:

«Таким образом, пространство само по себе и время само по себе обречены на то, чтобы превратиться в тени».

Здесь полезно привести известное высказывание Эйнштейна о том, что для убежденных физиков различие между прошлым, настоящим и будущим – иллюзия, хотя и стойкая. Но в конце своей жизни великий ученый, насколько можно судить, все же изменил свое мнение.

В 1949 году издали сборник статей, посвященный Эйнштейну, в котором был материал выдающегося математика Курта Гёделя, весьма серьезно воспринимавшего высказывание гения о том, что время как необратимость – всего лишь иллюзия. Когда Гёдель предложил Эйнштейну космологическую модель, в которой можно было вернуться в собственное прошлое, Эйнштейн отнюдь не пришел в восторг. В своем ответе Гёделю он писал, что не верит в то, будто может «телеграфировать в свое прошлое». Эйнштейн даже добавил, что невозможность возвращения в прошлое должна привести физиков к пересмотру проблемы необратимости. Именно это и пытаемся сделать мы.

По мере развития квантовой космологии и хроноквантовой физики подходы, акцентирующие внимание на роли времени и необратимости, формулируются все более точно и универсально. Тем не менее истина «в последней инстанции» по-прежнему остается для нас недосягаемой.



Так когда же началось время? Наука пока не дает окончательного ответа. И все же, согласно двум потенциально проверяемым теориям, Вселенная – а значит и время – существовала задолго до Большого взрыва. Если один из этих сценариев соответствует истине, то космос существовал всегда. Возможно, однажды он снова коллапсирует, но не исчезнет никогда.

Квант времени

Основатели атомистики, древнегреческие философы Левкипп и Демокрит обсуждали в ходе очень давнего философского диспута реальность атомов времени. К подобному представлению о дискретности времени философы и физики периодически обращались на всем протяжении истории. Важные соображения здесь принадлежат великому французскому математику Рене Декарту, который пришел к парадоксальному выводу о том, что для перехода нашего мира из мгновения в мгновение нужны силы, которые и создали Вселенную.

Сегодня мы воспринимаем атомизм явлений и предметов окружающей нас физической реальности как нечто естественное. Всем известно, что свет в конечном итоге состоит из фотонов. Причем никто особо не удивляется тому, что фотону свойствен дуализм: в одних случаях он ведет себя как материальная частица, в других – как электромагнитная волна. Более того, если мы углубимся в дебри современной квантовой физики, то в конце концов обнаружим, что микрочастица по своей природе не является, вообще-то говоря, ни тем и ни другим.

В пользу дискретности времени, по мнению многих теоретиков, свидетельствует то обстоятельство, что момент настоящего как еще не пришедшее будущее и уже ушедшее прошлое сводится к точке. Однако физическое явление в объективных материалистических моделях должно иметь протяженность! Во всяком случае, на сегодняшнем этапе развития теории физики полагают, что элементарной первоосновой Вселенной могут оказаться кварки – гипотетические частицы, которые пока никому не удалось экспериментально наблюдать.

Следующий логический шаг – обнаружение квантов времени. Существуют ли они?

Таинственные хронокванты

Можно лишь предположить, что фундаментальной длине физического пространства должен соответствовать своеобразный атом времени – его квант. Оценку этого кванта можно получить простым делением диаметра ячейки пространства на скорость света. На этих невообразимо малых расстояниях должны действовать законы еще не известной нам физики.

Никто не знает, как выглядят воображаемые атомы времени, но если они реально существуют, то вполне возможно, что «хроноквантовое время» внутри них свернуто в замкнутые циклы. Эти циклы могут не только играть важную роль в процессах взаимного превращения материи и энергии, но и объяснить многие загадочные обстоятельства рождения нашего мира. Тем не менее опыт всей физики учит, что время, существующее «само по себе», маловероятно. Оно всегда связано с явлениями, которые происходят в окружающем нас мире. А значит, вполне вероятно, что на него как на физический параметр должны распространяться законы этого мира. Так что в этом смысле мы вполне можем говорить о возможности существования неких частиц времени – хроноквантов.

Кванты времени четко проявляются при излучении энергии атомами.

В квантовом явлении излучения нельзя указать точное начало и окончание этого акта во времени. Время, за которое происходит это явление, выступает перед нами как цельный отрезок. У нас нет способов различить в нем отдельные ранние и поздние моменты и вообще разделить его на отдельные части.

Длительность элементарного «атома времени» в секундах выражается дробью с 44 нулями в знаменателе. Именно столько времени требуется на то, чтобы свет прошел расстояние, равное фундаментальной длине – кванту пространства. Согласно теории со странным названием «петлевая квантовая гравитация», пространство и время действительно состоят из дискретных частей. Расчеты, выполненные в рамках этой концепции, описывают простую и красивую картину, которая помогает нам объяснить загадочные явления, относящиеся к черным дырам и Большому взрыву. Но главное достоинство упомянутой теории заключается в том, что уже в ближайшем будущем ее предсказания можно будет проверить экспериментально: мы обнаружим атомы пространства, если они действительно существуют.


Квантовые состояния объема и площади


Главный вывод теории петлевой квантовой гравитации относится к объемам и площадям. Рассмотрим область пространства, ограниченную сферической оболочкой. В соответствии с классической (неквантовой) физикой ее объем может выражаться любым действительным положительным числом. Однако, согласно теории петлевой квантовой гравитации, существует отличный от нуля абсолютный наименьший объем (примерно равный кубу длины Планка, т. е. 10