Проблемы Гильберта (100 лет спустя) — страница 1 из 3

Проблемы Гильберта (100 лет спустя)

Историческое вступление

История Международных математических конгрессов насчитывает уже более  ста лет; традиционно они проводятся раз в 4 года. Самый, наверное, знаменитый из них состоялся в августе 1900-го года в Париже. Именно на этом конгрессе, на секции преподавания и методологии математики, выступил 38-летний немецкий математик Давид Гильберт.

В своём докладе он сформулировал те проблемы, которые, на его взгляд, являлись наиболее значимыми для математики начинающегося XX столетия.

Ни до, ни после него никто не ставил перед собой такую титаническую задачу. Даже в то время математика уже была достаточно специализированной: было много различных направлений, и одному человеку было очень трудно охватить все её разделы. Но Гильберт отличался широким кругозором: он работал практически во всех существовавших тогда областях математики и во многих из них добился выдающихся результатов. Это и позволило ему сформулировать ставшие знаменитыми 23 математические проблемы.

Эти проблемы делятся по областям математики следующим образом:

Области математики


№ проблем


Основания математики


1,2


Алгебра


13, 14, 17


Теория чисел


7-12


Геометрия


3, 4, 18


Топология


16


Алгебраическая геометрия


12-16, 22


Группы Ли


5, 14, 18


Вещественный и комплексный анализ


13,22


Дифференциальные уравнения


16, 19 -21


Математическая физика и теория вероятностей


6


Вариационное исчисление


23


- 3 -

Из таблицы (см. с. 3) видно, что проблемы Гильберта  относятся к самым разным областям математики, а некоторые — сразу к нескольким областям. Это вполне естественно:  математика едина, и одна и та же проблема может быть сформулирована и исследована в терминах различных математических дисциплин.

Доклад Гильберта на Парижском конгрессе можно найти,  в частности, в недавно вышедшем двухтомнике его избранных трудов.* Вступительная часть этого доклада читается  почти как литературное произведение. То была пора «романтической математики», и сам Гильберт начинает свой доклад словами, которые замечательно звучат и сейчас: «Кто из нас не хотел бы приоткрыть завесу, за которой скрыто наше будущее, чтобы хоть одним взглядом проникнуть в предстоящие успехи наших знаний и тайны его развития в ближайшие столетия? Каковы будут те особенные цели, которые поставят себе ведущие математические умы ближайшего поколения? Какие новые методы и новые факты будут открыты в новом столетии на широком и богатом поле математической мысли?» Так звучал математический доклад Гильберта на математическом международном конгрессе.

Когда эти проблемы были сформулированы, выяснилось, что некоторые из них либо решены, либо близки к решению.

Однако другие потребовали для своего решения несколько десятков лет и усилий многих выдающихся математиков, а две из них до сих пор не решены. Почему же Гильберт включил в свой доклад именно эти 23 проблемы? Чем он руководствовался, формулируя их?

Сам Гильберт, поясняя свой выбор, приводил слова одного известного французского математика: «Математическую теорию можно считать совершенной только тогда, когда ты сделал её настолько ясной, что берёшься изложить её содержание первому встречному». Конечно, здесь имеется некоторое преувеличение, но процитированная фраза пока-

------------------------

* Гильберт Д. Избранные труды. Т. 1, 2. М.: Факториал,

1998. См. также Проблемы Гильберта. М.: Наука, 1969.

- 4 -

зывает, что Гильберт придавал большое значение понятности и доступности математики.

Выбирая проблемы для своего доклада, Гильберт придерживался следующих принципов. Он говорил, что задача должна быть

а) понятной (должно быть ясно, откуда она возникла);

б) достаточно трудной, чтобы вызывать интерес;

в) не настолько трудной, чтобы её невозможно было решить.

Перейдём теперь к более подробному рассказу о некоторых из этих проблем.

Первая проблема Гильберта:

континуум-гипотеза

Континуум-гипотеза, первая проблема Гильберта, относится к задачам оснований математики и теории множеств. Она тесно связана с такими простыми и естественными вопросами, как «Сколько?», «Больше или меньше?», и практически любой старшеклассник может понять, в чём состоит эта проблема. Тем не менее, нам потребуются некоторые дополнительные сведения, чтобы её сформулировать.

Эквивалентность множеств


Рассмотрим следующий пример. В школе проходит вечер танцев. Как определить, кого больше на этом вечере: девочек или мальчиков?

Можно, конечно, пересчитать тех и других и сравнить два полученных числа. Но гораздо проще дать ответ, когда оркестр заиграет вальс и все танцующие разобьются на пары. Тогда, если все присутствующие танцуют, значит, каждому нашлась пара, т. е. мальчиков и девочек одинаковое количество. Если же остались только мальчики, значит, мальчиков больше, и наоборот.

Этот способ, иногда более естественный, чем непосредственный пересчёт, называется принципом разбиения на пары, или принципом взаимно однозначного соответствия.

- 5 -

Рассмотрим теперь совокупность объектов произвольной природы — множество. Объекты, входящие в множество, называются его элементами. Если элемент х входит в множество X, это обозначают так: х ∈ X. Если множество Х1 содержится в множестве Х2, т. е. все элементы множества Х1 являются также элементами Х2, то говорят, что Х1 — подмножество Х2, и кратко записывают так: Х1⊂ Х2.

Множество конечно, если в нём конечное число элементов. Множества могут быть как конечными (например, множество учеников в классе), так и бесконечными (например, N {в оригинале ℕ - не уверен, что символ отображают все читалки } — множество всех натуральных чисел {1,2,3,...}). Множества, элементами которых являются числа, называются числовыми.

Пусть X и Y — два множества. Говорят, что между этими множествами установлено взаимно однозначное соответствие, если все элементы этих двух множеств разбиты на пары вида (х,у), где х ∈ X, у ∈ Y, причём каждый элемент из X и каждый элемент из Y участвует ровно в одной паре.

Пример, когда все девочки и мальчики на танцевальном вечере разбиваются на пары, и есть пример взаимно однозначного соответствия между множеством девочек и множеством мальчиков.

Множества, между которыми можно установить взаимно однозначное соответствие, называются эквивалентными или равномощными. Два конечных множества эквивалентны тогда и только тогда, когда в них одинаковое количество элементов. Поэтому естественно считать, что если одно бесконечное множество эквивалентно другому, то в нём «столько же» элементов. Однако, опираясь на такое определение эквивалентности, можно получить весьма неожиданные свойства бесконечных множеств.

Бесконечные множества


Рассмотрим любое конечное множество и любое его собственное (непустое и не совпадающее с ним самим) подмножество. Тогда элементов в подмножестве меньше, чем в самом множестве, т. е. часть меньше целого.

Обладают ли бесконечные множества таким свойством? И может ли иметь смысл утверждение, что в одном бесконечном

- 6 -

 множестве «меньше» элементов, чем в другом, тоже бесконечном? Ведь про два бесконечных множества мы можем пока только сказать, эквивалентны они или нет. А существуют ли вообще неэквивалентные бесконечные множества?

Далее мы последовательно ответим на все эти вопросы. А для начала приведём забавную фантастическую историю из книги Н. Я. Виленкина «Рассказы о множествах».* Действие происходит в далёком будущем, когда жители разных галактик могут встречаться друг с другом. Поэтому для всех путешествующих по космосу построена огромная гостиница, протянувшаяся через несколько галактик.

В этой гостинице бесконечно много номеров (комнат), но, как и положено, все комнаты пронумерованы, и для любого натурального числа n есть комната с этим номером.

Однажды в этой гостинице проходил съезд космозоологов, в котором участвовали представители всех галактик. Так как галактик тоже бесконечное множество, все места в гостинице оказались занятыми. Но в это время к директору гостиницы приехал его друг и попросил поселить его в эту гостиницу.

«После некоторых размышлений директор обратился к администратору и сказал:

— Поселите его в №1.

— Куда же я дену жильца этого номера? — удивлённо спросил администратор.

— А его переселите в №2. Жильца же из №2 отправьте в №3, из №3 — в №4 и т. д.»

Вообще, пусть постоялец, живущий в номере k, переедет в номер k + 1, как это показано на следующем рисунке:

Тогда у каждого снова будет свой номер, а №1 освободится. Таким образом, нового гостя удалось поселить — именно потому, что номеров в гостинице бесконечно много.

--------------------

* Виленкин Н. Я. Рассказы о множествах. М.: Наука, 1965.

- 7 -

Первоначально участники съезда занимали все номера гостиницы, следовательно, между множеством космозоологов и множеством N было установлено взаимно однозначное соответствие: каждому космозоологу дали по номеру, на двери которого написано соответствующее ему натуральное число. Естественно считать, что делегатов было «столько же», сколько имеется натуральных чисел. Но приехал ещё один человек, его тоже поселили, и количество проживающих увеличилось на 1. Но их снова осталось «столько же», сколько и натуральных чисел: ведь все поместились в гостиницу!

И если обозначить количество космозоологов через No*, то мы получим «тождество» No = No + 1. Ни для какого конечного No оно, разумеется, не выполнено.

Мы пришли к удивительному выводу: если к множеству, которое эквивалентно N, добавить ещё один элемент, получится множество, которое снова эквивалентно N. Но ведь совершенно ясно, что делегаты-космозоологи представляют собой часть того множества людей, которые разместились в гостинице после приезда нового гостя. Значит, в этом случае часть не «меньше» целого, а «равна» целому!

Итак, из определения эквивалентности (которое не приводит ни к каким «странностям» в случае конечных множеств) следует, что часть бесконечного множества может быть эквивалентна всему множеству.

Возможно, что известный математик Больцано**, который пытался в своих рассуждениях применять принцип взаимно однозначного соответствия, испугался таких непривычных эффектов и поэтому не стал дальше развивать эту теорию. Она показалась ему совершенно абсурдной. Но Георг Кантор*** во второй половине XIX века вновь заинтересовался этим вопросом, стал исследовать его и создал теорию множеств, важный раздел оснований математики.

Продолжим наш рассказ про бесконечную гостиницу.

--------------------

* No (читается: «алеф-нуль») — стандартное обозначение для мощности (числа элементов) множества N.

** Бернард Больцано A781-1848) — чешский математик.

*** Георг Кантор A845-1918) — немецкий математик.

- 8 -

Новый постоялец «не удивился, когда на другое утро ему предложили переселиться в №1000 000. Просто в гостиницу прибыли запоздавшие космозоологи из галактики ВСК-3472, и надо было разместить ещё 999999 жильцов».

Но потом произошла какая-то накладка, и в эту же самую гостиницу приехали на съезд филателисты*. Их тоже было бесконечное множество — по одному представителю от каждой галактики. Как же их всех разместить?

Эта задача оказалась весьма сложной. Но и в этом случае нашёлся выход.

«В первую очередь администратор приказал переселить жильца из №1 в №2.

— А жильца из №2 переселите в №4, из №3 — в №6, вообще, из номера n — в номер 2n.

Теперь стал ясен его план: таким путём он освободил бесконечное множество нечётных номеров и мог расселять в них филателистов. В результате чётные номера оказались занятыми космозоологами, а нечётные — филателистами...

Филателист, стоявший в очереди n-м, занимал номер 2n — 1». И снова всех удалось разместить в гостинице.

Итак, ещё более удивительный эффект: при объединении двух множеств, каждое из которых эквивалентно N, вновь получается множество, эквивалентное N. Т. е. даже при «удвоении» множества мы получаем множество, эквивалентное исходному!

Далее будем рассматривать только числовые множества — подмножества числовой прямой. Множество всех чисел на этой прямой, т. е. множество действительных чисел, обычно обозначают через R.

Счётные и несчётные множества


Рассмотрим следующую цепочку: NZQR. (Z — это множество целых чисел, a Q — множество рациональных чисел, т. е. множество чисел вида p/q, где р и q — целые, q ≠ 0.) Все эти множества бесконечны. Рассмотрим вопрос об их эквивалентности.

-----------------------

* Коллекционеры почтовых марок.

- 9 -

Установим взаимно однозначное соответствие между Z и N: образуем пары вида (n, 2n) и (—n, 2n+1), n ∈N, а также пару (0,1) (на первое место в каждой паре ставится число из Z, а на второе — из N).

Есть и другой способ установить это соответствие, например, выписать все целые числа в таблицу, как показано на рисунке, и, обходя её по стрелочкам, присваивать каждому целому числу некоторый номер. Таким образом, мы «пересчитаем» все целые числа: каждому z ∈Z сопоставляется некоторое натуральное число (номер) и для каждого номера есть такое целое число, которому этот номер приписывается. При этом явную формулу выписывать не обязательно.

Таким образом, Z эквивалентно N.

Всякое множество, эквивалентное множеству натуральных чисел, называется счётным. Такое множество можно «пересчитать»: пронумеровать все его элементы натуральными числами.

На первый взгляд, рациональных чисел на прямой «намного больше» чем целых. Они расположены всюду плотно: в любом сколь угодно малом интервале их бесконечно много. Но оказывается, что множество Q также счётно. Докажем сначала счётность Q+ (множества всех положительных рациональных чисел).

Выпишем все элементы Q+ в такую таблицу: в первой строке — все числа со знаменателем 1 (т. е. целые), во второй — со знаменателем 2 и т. д. (см. рисунок на с. 11). Каждое положительное рациональное число обязательно встретится в этой таблице, и не однажды (например, число 1 = 1/1 = 2/2 = 3/3 = … встречается в каждой строке этой таблицы ).

- 10 -

А теперь мы пересчитаем эти числа: идя по стрелочкам, присваиваем каждому числу номер (или пропускаем это число, если оно уже встречалось нам раньше в другой записи).

Поскольку мы двигаемся по диагоналям, то мы обойдём всю таблицу (т. е. рано или поздно доберёмся до любого из чисел).

Итак, мы указали способ пронумеровать все числа из Q+, т. е. доказали, что Q+ счётно.

Заметим, что этот способ нумерации не сохраняет порядка: из двух рациональных чисел большее может встретиться раньше, а может — и позже.

Как же быть с отрицательными рациональными числами и нулём? Так же как с космозоологами и филателистами в бесконечной гостинице. Пронумеруем Q+ не всеми натуральными числами, а только чётными (давая им номера не 1, 2, 3, ..., а 2, 4, 6, ...), нулю присвоим номер 1, а всем отрицательным рациональным числам присвоим (по такой же схеме, что и положительным) нечётные номера, начиная с 3.

Теперь все рациональные числа занумерованы натуральными, следовательно, Q счётно.

Возникает естественный вопрос:

Может быть, все бесконечные множества счётны?

- 11 -

Оказалось, что R — множество всех точек на числовой прямой — несчётно. Этот результат, полученный Кантором в прошлом веке, произвёл очень сильное впечатление на математиков.

Докажем этот факт так же, как это сделал Кантор: с помощью диагонального процесса.

Как мы знаем, каждое действительное число х можно записать в виде десятичной дроби:

х = А, α1α2 ... αn ...,

где А — целое число, не обязательно положительное, a α1, α2, ... αn, ... — цифры (от 0 до 9). Это представление неоднозначно: например,

1/2 = 0,50000... = 0,49999...

(в одном варианте записи, начиная со второй цифры после запятой, идут одни нули, а в другом — одни девятки). Чтобы запись была однозначной, мы в таких случаях всегда будем выбирать первый вариант. Тогда каждому числу соответствует ровно одна его десятичная запись.

Предположим теперь, что нам удалось пересчитать все действительные числа. Тогда их можно расположить по порядку:

х1 = А, α1α2α3α4 ...

х2 = B, β1β2β3β4 ...

х3 = С, γ1γ2γ3γ4 ...

х4 = D, δ1δ2δ3δ4 ...

………

Чтобы прийти к противоречию, построим такое число у, которое не сосчитано, т. е. не содержится в этой таблице.

Для любой цифры а определим цифру ̅а следующим образом:

- 12 -

Положим  (у этого числа к-я цифра после запятой равна 1 или 2, в зависимости от того, какая цифра стоит на к-м месте после запятой в десятичной записи  числа xk).

Например, если

х1 = 2,1345 ...

х2 = -3,4215 ...

х3 = 10,5146 …

х4 = -13,6781 …

………

То

Итак, с помощью диагонального процесса мы получили действительное число у, которое не совпадает ни с одним из чисел таблицы, ведь у отличается от каждого xk по крайней мере к-й цифрой десятичного разложения, а разным записям, как мы знаем, соответствуют различные числа.

Предположив, что можно пересчитать все действительные числа, мы пришли к противоречию, указав число, которое не сосчитано. Следовательно, множество R. несчётно.

Множества R. и N не являются эквивалентными, и NR, поэтому всех действительных чисел в некотором смысле «больше» чем натуральных. Говорят, что мощность множества R. (мощность континуума) больше чем мощность N.

Континуум-гипотеза


Теперь мы располагаем всеми необходимыми сведениями для того, чтобы сформулировать знаменитую первую проблему Гильберта:

Континуум-гипотеза. С точностью до эквивалентности, существуют только два типа бесконечных числовых множеств: счётное множество и континуум.

Иначе говоря, нужно установить, существует ли множество промежуточной мощности, т. е. такое множество Τ, N⊂Τ⊂R, которое не эквивалентно ни N, ни R.

- 13 -

Этой проблемой занимались очень многие математики. Сам Георг Кантор неоднократно заявлял, что доказал эту гипотезу, но всякий раз находил у себя ошибку.

О ДОКАЗАТЕЛЬСТВАХ В МАТЕМАТИКЕ


Математика — точная наука, требующая строгости рассуждений. Но что означает строго доказать какое-либо утверждение? Это означает вывести его из аксиом — исходных положений, принимаемых без доказательства.

Конечно, в выборе аксиом, которые закладываются в основу теории, есть некоторый произвол. Но обычно аксиомы возникают естественным путём, из познания действительности. В теории множеств, частью которой являются конструкции, описанные в предыдущих разделах, тоже имеется общепризнанная система аксиом Цермело—Френкеля.

Доказать континуум-гипотезу — значит, вывести её из этих аксиом. Опровергнуть её — значит, показать, что если её добавить к этой системе аксиом, то получится противоречивый набор утверждений.

Решение проблемы


— Г-голубчики, — сказал Фёдор Симеонович озадаченно... — Это же проблема Бен Б-бецалеля. К-калиостро же доказал, что она н-не имеет р-решения.

— Мы сами знаем, что она не имеет решения, — сказал Хунта, немедленно ощетиниваясь. — Мы хотим знать, как её решать.

— К-как-то ты странно рассуждаешь, К-кристо... К-как же искать решение, к-когда его нет? Б-бессмыслица какая-то...

— Извини, Теодор, но это ты очень странно рассуждаешь. Бессмыслица — искать решение, если оно и так есть. Речь идёт о том, как поступать с задачей, которая решения не имеет. Это глубоко принципиальный вопрос...

А. Стругацкий, Б. Стругацкий.

Понедельник начинается в субботу

Оказалось, что первая проблема Гильберта имеет совершенно неожиданное решение.

В 1963 году американский математик Паул Коэн доказал, что континуум-гипотезу нельзя ни доказать, ни опровергнуть.

- 14 -

Это означает, что если взять стандартную систему аксиом Цермело—Френкеля (ZF) и добавить к ней континуум-гипотезу в качестве ещё одной аксиомы, то получится непротиворечивая система утверждений. Но если к ZF добавить отрицание континуум-гипотезы (т. е. противоположное утверждение), то вновь получится непротиворечивая система утверждений.

Таким образом, ни континуум-гипотезу, ни её отрицание нельзя вывести из стандартной системы аксиом.

Этот вывод произвёл очень сильный эффект и даже отразился в литературе (см. эпиграф).

Как же поступать с этой гипотезой? Обычно её просто присоединяют к системе аксиом Цермело—Френкеля. Но каждый раз, когда что-либо доказывают, опираясь на континуум- гипотезу, обязательно указывают, что она была использована при доказательстве.

Седьмая проблема Гильберта