Происхождение. Как Земля создала нас — страница 34 из 60

Мы научились применять и новые металлы. Пожалуй, самый очевидный пример – это алюминий, самый распространенный металл в земной коре (около 8 %), но извлечь его из каменистых руд невероятно трудно. Мы сумели наладить дешевое массовое производство алюминия только в конце XIX века, когда пропустили электричество через расплавленную руду. После этого он стал широко применяться как строительный материал и для упаковки пищи. В частности, алюминий очень легок, поэтому заявил о себе с распространением авиации после Первой мировой войны. Однако особенно сильно ассортимент металлов, которые использует наше технологическое общество, расширился в последние десятилетия.

Как вы думаете, сколько разных металлов сейчас при вас? Пять? Десять? Вы не поверите, но сегодня в одном карманном электронном устройстве задействовано больше 60 различных металлов. В это число входят и базовые металлы – медь, никель и олово, – и металлы особого назначения – кобальт, индий и сурьма, – и драгоценные металлы: золото, серебро и палладий[389]. Каждый из них ценится за особые электронные качества или идет на крошечные мощные магниты в динамике и вибрационном моторе. Стабильных (нерадиоактивных) химических элементов 83, и их них около 70 применяются в изготовлении электронных потребительских товаров вроде смартфонов[390], а следовательно, вы носите в кармане около 85 % всех доступных элементов из таблицы Менделеева.

Такой широкий ассортимент металлов идет не только на электронику. Высокоэффективные сплавы, применяющиеся в турбинах электростанции или в двигателе реактивного самолета, состоят более чем из десятка металлов, а катализаторы в химической промышленности, в том числе и участвующие в изготовлении современных лекарств, создаются с участием более 70 различных металлов. Однако большинство из нас о многих важнейших металлах даже и не слышали – это элементы с экзотическими названиями вроде тантала, иттрия и диспрозия.

Расширение диапазона полезных металлов просто поражает. Современные микросхемы могут содержать около 60 разных металлов, а еще в девяностые годы прошлого века их было около 20[391]. Возьмем, к примеру, индий. Этот металл открыли в 1863 году, а во время Второй мировой войны им покрывали детали авиационных двигателей, чтобы защитить от коррозии. Однако широкое применение индия началось только в девяностые годы ХХ века, когда экраны электронных устройств стали покрывать тонкой пленкой оксида индия-олова, поскольку он обладает редким сочетанием полезных свойств: оксид металла, который одновременно и прозрачен, и проводит электричество. Сегодня индий применяется во всем, от телевизоров с плоским экраном до ноутбуков, а особенно в сенсорных экранах современных смартфонов и планшетов[392]. Так же обстоят дела и с галлием – он был открыт через несколько лет после индия, однако нашел широкое применение лишь в эру электроники: сегодня он применяется в интегральных микросхемах, солнечных батареях, голубых светодиодах и лазерных диодах для дисков Blu-ray.

Большинство этих металлов с экзотическими названиями принадлежат к одной из двух групп – редкоземельные металлы и металлы платиновой группы. Металлы из этих групп химически очень схожи, а следовательно, концентрируются в одних и тех же минералах и добываются в ходе сепарационных процессов одновременно. Таких металлов примерно два десятка, и они и в самом деле определяют облик нашей технологической эпохи: свыше 80 % случаев их применения произошли после восьмидесятых годов прошлого века[393]. А если они – главные составляющие нынешней технологической эпохи, тем важнее станет их роль в будущем, когда мы отойдем от нынешней углеродной экономики. Именно они обеспечивают нам компактные, но мощные магниты, необходимые для генераторов в ветряных турбинах и моторов электромобилей, а также аккумуляторные батареи большой емкости.

Семнадцать редкоземельных металлов – это лантаниды, группа элементов из шестой строки таблицы Менделеева, а также химически похожие на них элементы скандий и иттрий. Правда, название «редкоземельные» не вполне удачно – не так уж и редко они встречаются в горных породах нашей планеты, не считая радиоактивного прометия, которого во всей земной коре не больше полкило[394]. Например, лантана на Земле почти столько же, сколько меди и никеля, и в три раза больше свинца. И все редкоземельные металлы распространены по меньшей мере в двести раз больше золота.

Поэтому сложность не в наличии этих металлов в земной коре, а в том, как их оттуда добыть. Поскольку редкоземельные металлы химически схожи и поэтому встречаются в одних и тех же минералах, это означает, что их трудно изолировать друг от друга и выделить в чистом виде. Еще больше хлопот причиняют предельные концентрации, в которых они встречаются в породах. Многие другие металлы концентрируются в богатых рудах в результате особых геологических процессов, например при возникновении полосчатых железистых формаций и толстых серебряных жил, проходящих через Серро-Рико, к чему мы вернемся в главе 8. Однако химия редкоземельных металлов такова, что они не склонны создавать обогащенные высококачественные руды, а по большей части распределены по породе в небольших концентрациях. Следовательно, в целом их добыча экономически бессмысленна: она обходится дороже, чем стоимость самих металлов. Поэтому географических регионов, где можно вести прибыльную добычу редкоземельных металлов, в мире не так уж много. Сегодня их добывают в небольших количествах в Индии и Южной Африке, но с девяностых годов прошлого века подавляющее большинство мировой добычи сосредоточено в Китае.

Шесть металлов платиновой группы – родий, рутений, палладий, осмий, иридий и платина – собраны в середине таблицы Менделеева и, подобно редкоземельным металлам, химически схожи, что опять же означает, что они обычно встречаются все вместе в одних и тех же минеральных залежах. Однако в отличие от своих редкоземельных собратьев металлы платиновой группы и в самом деле редки и драгоценны. Они принадлежат к самым редким стабильным элементам в земной коре, и некоторые встречаются в миллионы раз реже меди. Платина – один из самых распространенных металлов в этой группе, но ее общемировая добыча составляет всего несколько сотен тонн в год – сравните с 58 миллионами тонн алюминия или миллиардом с лишним тонн чугуна. Иридий особенно редок, в земной коре его всего одна миллиардная часть – в среднем 1000 тонн пород из земной коры содержат не более 1 грамма иридия. Подобно другим металлам платиновой группы (и золоту), иридий – сидерофильный элемент, поэтому почти все их запасы, присутствовавшие на юной Земле, погрузились в ее недра вместе с железом и вошли в состав ядра нашей планеты[395].

Металлы платиновой группы называют еще и благородными, поскольку они устойчивы к химическому воздействию и коррозии даже при высоких температурах. Поскольку платина редкая и нереактивная, она хорошо подходит для драгоценностей, и примерно треть общего объема этого металла, продаваемого в год, идет на украшение наших тел[396]. Но в отличие от других драгоценных металлов, в том числе золота, которое в наши дни служит в основном для ювелирных украшений и сохранения сбережений, а в промышленности применяется лишь 10 % всего золота, в основном в качестве электрических контактов, у металлов платиновой группы много практических применений: их используют и в турбинных двигателях, и в свечах зажигания, и в компьютерных микросхемах, и в жестких дисках, и в контактах кардиостимуляторов[397].

Платина идет в основном на каталитические дожигатели выхлопных газов в двигателях внутреннего сгорания, позволяющие снизить выброс вредных газов, и на катализаторы в химической промышленности. Они применяются при очистке бензина и создании лекарств – антибиотиков и витаминов, – а также в производстве пластика и синтетической резины. Однако самую важную роль платина, пожалуй, играет в сельском хозяйстве. Здесь она служит катализатором химического процесса, производящего искусственные удобрения, при котором, в сущности, добывают азот из воздуха[398]. По оценкам, в наши дни этот металл помогает прокормить примерно половину человечества[399].

Поскольку металлы платиновой группы так редки, их можно добывать только из пород, в которых они содержатся в значительно более высокой концентрации, чем в среднем в земной коре. Это происходит в местах, прошедших довольно хитроумный геологический процесс. Металлы платиновой группы могут обогащать некоторые медные и никелевые руды, поэтому отчасти их добыча – побочный продукт производства этих промышленно значимых металлов. В частности, это происходит в шахтах близ российского города Норильска, где разрабатывают залежи, которые сформировались при извержении лавы, создавшем Сибирские траппы в конце пермского периода, 250 миллионов лет назад[400], и в кратере Садбери в Канаде. Кратер Садбери – один из крупнейших и старейших кратеров на Земле, оставшихся после падения астероидов. Изначально он достигал 250 километров в диаметре, а образовался 1,85 миллиарда лет назад, когда в нашу планету врезался астероид диаметром более 10 километров. Эта колоссальная дыра в земле наполнилась магмой, содержавшей медь, никель, золото и металлы платиновой группы, а затем она кристаллизовалась в богатые руды[401]. Однако, безусловно, самый изобильный источник металлов платиновой группы – это один-единственный регион в Южной Африке