Многие детали этой теории все еще вызывают споры. Например, до конца не известно, чтó является источником энергии геодинамо. Тепловая конвекция? (Действительно, на границе ядра и мантии жидкое железо, остывая, становится тяжелее и опускается.) Но железо отлично проводит тепло, конвективные потоки легко смещаются, и тепловая конвекция кажется слишком слабым источником энергии.
По другой теории, конвекция обусловлена различным химическим составом ядра Земли. Считается, что жидкое внешнее ядро состоит из смеси железа, никеля и небольшого количества легких элементов, таких как сера. Когда этот расплав застывает на границе внешнего и внутреннего ядер, легкие элементы растворяются в нем, расплав становится чрезвычайно плавучим и быстро поднимается со дна к верхней части внешнего ядра, создавая конвективное движение и питая геодинамо. Отсутствие магнитного поля у Венеры может быть связано с более высокими температурами на этой планете, горячие мантия и ядро которой не позволяют остыть внутреннему ядру. Это укрепляет предположение, что механизм геодинамо вызывается химической конвекцией, связанной с кристаллизацией внутреннего ядра. В принципе есть и другие потенциальные источники энергии для геодинамо, вопрос, какой из них является главным, нам еще предстоит прояснить.
Но вернемся к поверхности Земли и к вопросу о происхождении земной коры и континентов. Кора планеты обычно формируется из самых легких расплавов, которые остывают, поднявшись на поверхность. Когда на Земле существовал океан магмы, самые легкие вещества именно так образовали тонкую кору. Но, вероятно, от нее мало что сохранилось до наших дней. Расплав, поступающий из мантии (или океана магмы) на поверхность планеты, представляет собой жидкую текучую лаву – базальт. Лучший пример – лава гавайских вулканов, образующих базальт и в наши дни. Гавайские острова сформировались (а некоторые все еще формируются) над необычно горячей областью земной мантии, называемой «горячей точкой». Эту точку, по всей видимости, создает горячий конвективный апвеллинг, он же мантийный плюм, который поднимается по всей площади мантии с нижней ее части, расположенной вблизи горячего железного ядра. В глубине мантии плюм остается твердым, а по мере приближения к поверхности частично плавится (на 10–20 % или больше), поскольку плавление легче происходит при низком давлении. Плавящееся вещество выходит на поверхность планеты уже в виде базальта. Гавайский плюм выбрасывает его так много, что образует огромные вулканические острова (по сути это щитовые вулканы – широкие и с пологими склонами). На других планетах земной группы также есть базальтовая кора, возможно созданная таким же образом, – к примеру, гора Олимп на Марсе выглядит, как гигантский щитовой вулкан.
Вместе с тем огромное количество базальтовой коры Земли образуется без участия наземных вулканов – вдоль длинных поясов подводных горных хребтов, называемых срединно‑океаническими. Они опоясывают Землю, как швы на бейсбольном мяче. Правда, швы это никудышные, именно в этих местах дно разрывается, и из мантии поднимаются потоки базальтовой лавы, застывая и формируя новые участки океанической коры. Этот процесс называется растеканием (спредингом) морского дна, и его открытие привело к появлению революционной теории тектоники литосферных плит.
Растекание морского дна предсказал геофизик Гарри Хесс в начале 1960‑х гг., а вскоре Фредерик Вайн, Драммонд Мэтьюз и Лоуренс Морли открыли это явление. Базальты срединно‑океанических хребтов содержат магнитные минералы. Растекаясь и застывая, они «записывают» направление магнитного поля Земли – как металлическая стружка на листе бумаги показывает линии магнитного поля подложенного магнита. Как мы уже говорили, геомагнитное поле нашей планеты периодически меняет свое направление, и по мере растекания дна эти инверсии фиксируются в базальте как на телеграфной ленте или магнитофонной пленке (не самые популярные в наши дни носители, но ни современные флеш‑накопители, ни компакт‑диски явно не подходят для этой аналогии). Таким образом, параллельно срединно‑океаническим хребтам образуются полосы магнитных аномалий, показывающие, когда геомагнитное поле было направлено вверх или вниз, а это означает, что морское дно двигалось наружу во время «записи» этих событий (следовательно, можно выяснить, как быстро оно перемещалось).
Открытие растекания морского дна стало, по мнению большинства геологов, началом революционных открытий в геологии. Идея о том, что поверхность Земли подвижна, обсуждалась с 1920–1930‑х гг. Вначале возникла теория дрейфа материков. Предложенная немецким метеорологом Альфредом Вегенером, эта гипотеза утверждала, что континенты перемещаются подобно айсбергам, пробиваясь сквозь океаническую кору (впоследствии было доказано, что это невозможно). Сформулированная позже теория тектоники плит утверждает, что вся поверхность планеты разделена на гигантские фрагменты‑пазлы, которые находятся в постоянном движении относительно друг друга, а встроенные в эти пазлы континенты лениво движутся вместе с ними. Гигантские куски пазлов называются литосферными плитами, из них выделяют восемь крупных, например Тихоокеанскую плиту (самую большую), и небольшое количество более мелких.
Литосферные плиты, как фрагменты пазла, раскалывают верхний каменистый слой Земли, при этом плиты движутся относительно друг друга. На рисунке изображены основные литосферные плиты, стрелки указывают направления их движения. Взаимные движения плит определяют типы их границ: дивергентные (см. расширяющийся Срединно‑Атлант ический хребет между Евразийской и Северо‑Американской плитами), конвергентные (например, столкновение Индостанской и Евразийской плит, в результате которого сформировались Гималаи) и трансформные (например, разлом Сан‑Андреас на Западном побережье США, между Тихоокеанской и Северо‑Американской плитами). Там, где плиты сходятся в зоны субдукции, происходит погружение более старых и холодных плит в нижележащую мантию, что охлаждает ее. Это одна из форм мантийной конвекции. (Схема предоставлена Полом Весселом из Гавайского университета в Маноа.)
Многие ученые внесли свой вклад в уточнение теории тектоники плит, математическая модель, описывающая их движение, была предложена Дэном Маккензи и Джейсоном Морганом. Однако до сих пор остается загадкой, почему на Земле, в отличие от других планеты земной группы, вообще происходит тектоника плит.
Тектонические плиты – это прочные твердые блоки холодной породы толщиной до 100 км (при этом у них слабые края). Плиты непрерывно скользят (в геологическом масштабе времени; в масштабе времени человека скольжение может принимать форму землетрясений), благодаря чему происходит их движение. Как уже было сказано, там, где происходит растекание морского дна, эти фрагменты пазла раздвигаются. Но если плиты расходятся друг от друга в одной зоне, значит, в другой их противоположные края будут сближаться. Регионы, где это происходит, называются зонами субдукции. В частности, плита, сдвигающаяся от другого блока земной коры, обычно противоположным краем сталкивается с третьей плитой и погружается под нее. Процесс погружения одной плиты под другую называется субдукцией. Эти зоны хорошо прослеживаются в самых глубоких желобах океана, таких как Марианская впадина, где океанское дно проваливается вниз под весом погружающихся плит. Все это движение не случайно: насколько об этом можно судить с поверхности, оно является проявлением конвекции мантии Земли. Литосферная плита опускается, потому что остывает, удаляясь от горячего места растекания морского дна, где была создана. В конце концов она становится холодной и достаточно тяжелой, чтобы погрузиться под медленно двигающуюся мантию, при этом охлаждая ее. Таким образом, субдукция (погружение одних участков земной коры под другие) эквивалентна холодному и тяжелому конвективному даунвеллингу (опусканию слоев вещества).
Геофизики (и я в их числе) полагают, что субдукция – это не только проявление конвекции земной мантии, но и главная движущая сила тектоники плит. Холодная, погружающаяся часть плиты (слэб) остужает мантию благодаря конвекции и в то же время тянет заднюю часть плиты на поверхность. Это подтверждается тем фактом, что плиты с обширными зонами субдукции на краях самые быстрые. Есть целый ряд плит, которые практически не имеют зон субдукции и движутся гораздо медленнее: по всей видимости, их просто толкают погружающиеся плиты. Самая крупная литосферная плита – Тихоокеанская – обладает самым большим количеством зон субдукции и быстро перемещается, примерно на 10 см в год.
Зоны субдукции также являются областями, где происходят наиболее сильные и разрушительные землетрясения. Землетрясения случаются и в районе срединно‑океанических хребтов, но они незначительны. Подводные хребты также производят большую часть лавы, но она жидкая и легко течет. Там, где плиты не расходятся в разные стороны и не сближаются, а «скользят» одна рядом с другой (как, например, в разломе Сан Андреас и Анатолийской зоне разломов), землетрясения происходят значительные, но не разрушительно сильные. Также в этих зонах практически отсутствует вулканизм, так как движение там не связано с поднятием горячей породы мантии к поверхности. Однако погружающаяся плита задевает край верхней плиты и тянет ее вниз, сгибая в форме лука. Когда сила трения между этими плитами уже не может выдержать напряжение, верхняя плита распрямляется обратно вверх, «выстреливает», порождая сильнейшие землетрясения и зачастую цунами.
А еще в зонах субдукции активно извергаются вулканы, несмотря на то что эти зоны находятся там, где происходит погружение холодных плит. Что же заставляет расплавленные горные породы подниматься к поверхности, создавая вулканы? Образование вулканов в этих областях – ключ к пониманию того, откуда вообще берется бóльшая часть континентальной коры. В самом деле, на других известных нам планетах нет тектоники плит и континентальной коры.
Процесс плавления в зонах субдукции сложнее, чем в срединно‑океанических хребтах или таких горячих точках, как Гавайи. Ни в одном из этих случаев плавление не вызвано тем, что порода становится горячее (что мы обычно представляем себе, когда думаем о плавлении льда или воска). На срединно‑океанических хребтах и в горячих точках породы мантии Земли плавятся, потому что поднимаются к зонам более низкого давления, которое облегчает процесс плавления. В зонах субдукции плавление облегчает вода. Литосферные плиты, входящие в зону субдукции, как правило, находились под водой от десятков до нескольких сотен миллионов лет. Извергающаяся в районе срединно‑океанических хребтов лава вступает в реакцию с водой и создает гидратированные минералы (породы, содержащие воду или водород), такие как амфиболы и серпентин. Осадочные отложения, смываемые с континентов (которые, как принято считать, тогда еще не образовались) и опускающиеся на дно океана, также вбирают воду (и углерод, что мы обсудим позже). Когда плита достигает зоны субдукции, значительная часть ее тонкой коры содержит гидратированные минералы и большинство их погружаются в зону субдукции вместе с остальной частью плиты, хотя многие осадочные отложения откалываются и скапливаются на поверхности. Когда эти минералы погрузятся примерно на 100 км в глубь мантии, температура и давление становятся слишком высокими, чтобы они могли остаться гидратиров