Таким образом, мы видим, что углеводороды очень широк© распространены в звездных атмосферах, где они могли образоваться, конечно, независимо от жизни, абиогенно *, так как при царящих на поверхности звезд температурах не может быть и речи о присутствии каких-либо живых организмов.
Но абиогенное образование углеводородов можно установить не только в раскаленных звездных атмосферах, но и при очень низких температурах. В настоящее время хорошо известно, что далеко не все вещество нашей Вселенной сосредоточено в виде мощных скоплений в звездах и планетах. Значительная его масса рассеяна в космическом пространстве в виде очень разреженного газа и пыли. В ряде мест межзвездного пространства скопления газа и пыли образуют гигантские облака, которые можно наблюдать непосредственно даже невооруженным глазом в виде темных пятен на фоне Млечного Пути, так как они преграждают нам свет расположенных за ними звезд. Температура межзвездного газа не подымается выше —200° С, а температура пыли еще ниже, она приближается к абсолютному нулю. Межзвездный газ в основном состоит из водорода, который вообще является господствующим
1 Биогенными веществами называются те, которые возникают благодаря жизнедеятельности организмов Приставка «а» означает отрицание. Следовательно*, под абиогенным образованием нужно понимать то, которое происходило или «происходит независимо от жизни в безжизненной природе.
УГЛЕРОД НА ЗВЕЗДАХ
На всех звездах можно обнаружить углерод, но в различном состоянии
Наиболее горячие голубовато-белые звезды обладают 20 000°. Здесь все элементы, в том числе и углерод, находятся белых и желтовато-белых звездах с температурой поверхности соединяются между собой, образуя метин (простейший поверхности 6000—8000° возникают и другие соединения на потухающих красных звездах с температурой, которая даже на их поверхности превышает в виде разрозненных мельчайших частичек — атомов. На 10 000—12 000° атомы углерода и атомы водорода уже углеводород (СН). На желтых звездах с температурой углерода. Еше более разнообразные соединения находя гея температурой поверхности 2000—4000°
УГЛЕРОД НА СОЛНЦЕ
Наше Солнце является желтой звездой, температура его поверхности около 6000°
Поверхность Солнца с гранулами и пятнами
В раскаленной солнечной атмосфере углерод имеется не только в виде свободных атомов, но и в виде ряда соединений: а) свободные атомы углерода, водорода и азота; б) соединения углерода с водородом (метин); в) соединения углерода с азотом (циан); г) соединения двух атомов углерода (дикарбон)
в космосе элементом: на его долю приходится около 90% всего вещества всей нашей звездной системы (Галактики). Однако наряду с водородом в межзвездных газопылевых скоплениях с полной достоверностью установлено присутствие метана (СН4), а возможно, и других углеводородов. Таким образом, в раскаленных звездных атмосферах и в холодных газопылевых облаках установлено наличие углеводородов, которые могли образоваться здесь лишь вне зависимости от жизни, только абиогенным путем.
Большой интерес для разрешения разбираемого нами вопроса представляет исследование атмосфер больших планет нашей солнечной системы. Как показали эти исследования, атмосфера Юпитера в значительной части состоит из аммиака и метана. Есть основание предполагать здесь наличие и других углеводородов. Но вследствие низкой температуры, господствующей на поверхности Юпитера (135° ниже нуля), эти углеводороды в главной своей массе находятся в жидком или твердом состоянии.
Еще более далекая от нас большая планета Сатурн, подобно Юпитеру, также обладает мощной атмосферой, содержащей в себе метан и аммиак. Но вследствие большей удаленности планеты Сатурн от Солнца температура поверхности Сатурна еще ниже, чем Юпитера. Поэтому здесь значительная часть аммиака из газообразного перешла в твердое состояние, что и находит отражение в спектре Сатурна, где метановые полосы выступают очень ярко. У'ран и Нептун, находясь еще дальше от Солнца, обладают еще более низкой температурой поверхности. Аммиак из их атмосферы должен был уже совершенно вымерзнуть. Зато здесь можно обнаружить громадное количество метана. Большой интерес представляет обнаружение метана в атмосфере спутника Сатурна — Титана. Этот спутник в три раза меньше Земли по поперечнику и в сорок раз меньше ее по массе. Если бы он обладал той же температурой, что и Земля, то метан улетел бы из его атмосферы в межпланетное пространство. Титан удерживает свою метановую атмосферу только благодаря той очень низкой температуре, которая царит в районе Сатурна и которая на 180° ниже нуля.
Образец железного метеорита
Таким образом, на всех больших планетах и даже на их спутниках можно обнаружить наличие углеводородов, которые могли возникнуть только абиогенным путем.
Можно обнаружить присутствие углеводородов и в атмосфере комет. Но особый интерес представляет с указанной точки зрения изучение метеоритов — тех «небесных камней», которые время от времени залетают к нам в атмосферу из межпланетных пространств и падают на поверхность Земли.
Упавшие на Землю метеориты могут быть подвергнуты непосредственному химическому анализу и даже минералогическому исследованию. Это единственные «неземные» тела, состав которых может быть установлен с исключительной полнотой и надежностью. Вместе с тем изучение метеоритов все более и более убеждает нас в том, что по своему химическому составу они очень близки к составу Земли в целом и являются образованиями, родственными по своему происхождению нашей планете. Отсюда ясно, какое большое значение имеет изучение метеоритов для познания начальной истории Земли.
Обычно различают две главнейшие группы метеоритов: железные (металлические) и каменные. Первые в основном состоят из железа (90%), никеля (8%) и кобальта (0,5%). В каменных метеоритах процент железа значительно меньше (около 25%). В них содержится большое количество окисей различных металлов: магния, алюминия, кальция, натрия, марганца и др.
Углерод в том или ином количестве находится во всех метеоритах. Он присутствует здесь прежде всего в самородном виде, в форме угля, графита или алмаза. Но особенно характерными для метеоритов являются соединения углерода с металлами, так называемые карбиды. Именно в метеоритах впервые был открыт весьма распространенный в них минерал — когенит, который представляет собой карбид железа, никеля и кобальта.
Из других соединений, в которых углерод встречается в метеоритах, нужно указать на углеводороды. Еще в 1857 году из каменистого метеорита, упавшего в Венгрии, близ Кабы, удалось выделить некоторое количество органического вещества, похожего на горный воск. Анализ этого вещества показал, что оно действительно представляет собой высокомолекулярный углеводород. Подобного же рода соединения, содержащие в своих молекулах многие атомы углерода и водорода, а иной раз кислорода и серы, были выделены и из ряда других разнообразных метеоритов.
В то время, когда впервые был установлен факт нахождения углеводородов в метеоритах, еще существовало ложное убеждение, что органические вещества (а следовательно, и углеводороды) в естественных условиях могут образовываться только живыми организмами. Поэтому многие ученые высказывали тогда предположение, что углеводороды метеоритов образовались вторично, путем разложения организмов, живших когда-то на этих небесных телах. Однако позднейшие весьма тщательные исследования полностью опровергли это предположение, и мы в настоящее время знаем, что углеводороды метеоритов, так же как и углеводороды звездных атмосфер, возникли неорганическим путем, т. е. вне какой-либо связи с жизнью.
Подводя итог всему сказанному, мы видим, что абиогенное, независимое от жизни, образование углеводородов в природных условиях не только вполне возможно, но и является весьма распространенным процессом во Вселенной. Углеводороды обнаружены повсюду, на всех доступных нашему исследованию объектах: в атмосферах различных звезд, в том числе и в атмосфере Солнца, в холодных газопылевых облаках межзвездного пространства, на поверхности больших планет и их спутников, в веществе комет и, наконец, в упавших на Землю метеоритах. Неужели же наша планета является каким-то абсолютным исключением из этого общего правила и на ней никогда не могли образоваться простейшие органические вещества абиогенным путем? Не правильнее ли думать, что этот процесс имел место в прошлые эпохи существования Земли, предшествовавшие возникновению жизни, а может быть, происходит и сейчас, только мы его не замечаем.
История возникновения нашей планеты — Земли, к сожалению, еще и до сих пор остается во многих отношениях не совсем ясной. Поэтому и сейчас в научной литературе по вопросу о происхождении Земли конкурируют между собой несколько теорий или гипотез, которые в отдельных своих положениях противоречат друг другу. Однако все они сходятся на том, что материалом для образования Земли, как и других планет нашей солнечной системы, послужило одно из тех газопылевых облаков межзвездного вещества, о которых упоминалось нами выше.
Споры вызывает лишь вопрос о происхождении этого облака. Так, например, согласно теории О. Шмидта оно было захвачено сформировавшимся до этого Солнцем, когда Солнце, двигаясь по круговой орбите вокруг центра нашего звездного мира (Галактики), вошло в скопление газопылевой материи и вовлекло часть этой материи в сферу своего притяжения. Напротив, В. Фесенков и многие другие астрономы считают, что Солнце образовалось почти одновременно с окружающими его планетами из одного общего для всех них газопылевого облака.
Несколько лет тому назад среди очень крупных скоплений газопылевой материи удалось обнаружить относительно небольшие, но вместе с тем сравнительно плотные образования, которые вследствие своей сильной светонепроницаемости хорошо видны на фоне светлых туманностей в форме круглых или почти круглых пятнышек. Они получили название глобул. Масса некоторых из них в несколько раз меньше, чем масса Солнца, но другие глобулы включают в себя такое количество вещества, что его хватило бы для образования не одной, а нескольких солнечных систем.