Какие действия человека считаются вредными для биосферы? Например, люди добывают нефть, газ и уголь, чтобы сжечь их. Но это не чужое для биосферы вещество. Это остатки древних растений и водорослей, это углерод, который захоронился и выпал из глобального круговорота в древние эпохи. Человек просто возвращает биосфере потерянное ею. Глобальное потепление и таяние ледников, которое может произойти из-за сжигания нефти, – это всего лишь возвращение Земли к нормальному для нее климату. Оледенения на полюсах за последние полмиллиарда лет были лишь два раза: в конце каменноугольного и пермском периодах (310–250 млн лет назад) и последние 40 млн лет. В остальные эпохи на большей части суши до самого полюса климат был близок к субтропическому. Например, ископаемые остатки крокодилов возраста 50 млн лет найдены на острове Элсмир (Канадский арктический архипелаг, далеко за полярным кругом). Так что таяние ледников будет неприятностью лишь для людей. Для Земли это скорее возвращение к норме из длительного ледникового периода.
Точно так же люди добывают фосфориты и производят из них удобрения для полей. Так в биосферу возвращается потерянный ею когда-то фосфор. Без человека круговорот фосфора практически не замыкается: фосфор постепенно смывается с суши в море и откладывается в морских осадках. Движение плит океанской коры может занести эти осадки в мантию, откуда фосфор выйдет с вулканическими газами и пеплом и вернется в биосферу. Но на современной Земле тектоническая активность не покрывает осаждения фосфора в океанах. Потеря фосфора постепенно снижает продуктивность всей биосферы. Только человек, добывая похороненные в толще земной коры фосфориты, решает эту проблему биосферы.
Есть и еще более важная услуга, которую только разумный вид может оказать родной биосфере. Время, отведенное на развитие жизни на планете, ограничено. Светимость Солнца неуклонно возрастает, и через 1,5 млрд лет даже полное изъятие углекислого газа из атмосферы не сможет предотвратить глобальное потепление. После этого Земля неизбежно превратится в подобие Венеры, а биосфера погибнет. Иначе говоря, земная жизнь уже потратила три четверти отведенного ей времени. И она неизбежно погибнет, если разумные существа не построят космические корабли и не возьмут земные организмы с собой к другим звездам. В этом смысле технологическое развитие человечества необходимо для всего живого на нашей планете.
Библиография
Диброва Д., Гальперин М., Кунин Е., Мулкиджанян А. Древние системы натрий-калиевого гомеостаза клетки как предшественники мембранной биоэнергетики // Биохимия, 2015. Т. 80. Вып. 5. С. 590–611.
Еськов К. Удивительная палеонтология: История Земли и жизни на ней. М., 2007.
Кунин Е. Логика случая. О природе и происхождении биологической эволюции. М., 2014.
Марков А., Куликов А. Гомологичные белковые домены в надцарствах Archaea, Bacteria и Eukaryota и проблема происхождения эвкариот // Известия Российской академии наук. Серия биологическая. 2005. № 4. 389–400.
Марков А., Куликов А. Происхождение эвкариот: выводы из анализа белковых гомологий в трех надцарствах живой природы // Палеонтологический журнал. 2005. № 4. С. 3–18.
Марков А., Куликов А. Происхождение эукариот как результат интеграционных процессов в микробном сообществе (http://evolbiol.ru/dok_ibr2009.htm)
Acevedo O. L. & Orgel L. E. Non-enzymatic transcription of an oligodeoxynucleotide 14 residues long // Journal of Molecular Biology, 1987, vol. 197, pp. 187–193. DOI: 10.1016/0022–2836(87)90117–3
Adamala K. & Szostak J. W. Competition between model protocells driven by an encapsulated catalyst // Nature Chemistry, 2013, vol. 5, pp. 495–501. DOI: 10.1038/nchem.1650
Adamala K. et al. Open questions in origin of life: experimental studies on the origin of nucleic acids and proteins with specific and functional sequences by a chemical synthetic biology approach // Computational and Structural Biotechnology Journal, 2014, vol. 9. DOI: 10.5936/csbj.201402004
Attwater J., Wochner A. & Holliger P. In-ice evolution of RNA polymerase ribozyme activity // Nature Chemistry, 2013, vol. 5, pp. 1011–1018. DOI: 10.1038/nchem.1781
Baaske P. et al. Extreme accumulation of nucleotides in simulated hydrothermal pore systems // Proceedings of the National Academy of Sciences, 2007, vol. 104, pp. 9346–9351. DOI: 10.1073/pnas.0609592104
Bailey S., Wing R. A. & Steitz T. A. The Structure of T. aquaticus DNA Polymerase III Is Distinct from Eukaryotic Replicative DNA Polymerases // Cell, 2006, vol. 126, pp. 893–904. DOI: 10.1016/j.cell.2006.07.027
Bali S. et al. Molecular hijacking of siroheme for the synthesis of heme and d1 heme // Proceedings of the National Academy of Sciences, 2011, vol. 108, pp. 18260–18265. DOI: 10.1073/pnas.1108228108
Bar-Even A., Noor E., Flamholz A. & Milo R. Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes // Biochimica et Biophysica Acta (BBA) – Bioenergetics, 2013, vol. 1827, pp. 1039–1047. DOI: 10.1016/j. bbabio.2012.10.013
Barry R. D. The multiplication of influenza virus: II. Multiplicity reactivation of ultraviolet irradiated virus // Virology, 1961, vol. 14, pp. 398–405. DOI: 10.1016/0042–6822(61)90330–0
Baum D. A. & Baum B. An inside-out origin for the eukaryotic cell // BMC Biology, 2014, vol. 12, p. 76. DOI: 10.1186/s12915-014-0076-2
Baymann, F. et al. The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes // Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2003, vol. 358, pp. 267–274. DOI: 10.1098/rstb.2002.1184
Baymann, F., Brugna, M., Mühlenhoff, U. & Nitschke, W. Daddy, where did (PS) I come from? // Biochimica et Biophysica Acta (BBA) – Bioenergetics, 2001, vol. 1507, pp. 291–310. DOI: 10.1016/S0005–2728(01)00209–2
Bell, P. J. L. The viral eukaryogenesis hypothesis: a key role for viruses in the emergence of eukaryotes from a prokaryotic world environment // Annals of the New York Academy of Sciences, 2009, vol. 1178, 91–105. DOI: 10.1111/j.1749–6632.2009.04994.x
Bell, P. J. Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? // Journal of molecular evolution, 2001, vol. 53, pp. 251–256. DOI: 10.1007/s002390010215
Bell, P. J. L. Sex and the eukaryotic cell cycle is consistent with a viral ancestry for the eukaryotic nucleus // Journal of theoretical biology, 2006, vol. 243, pp. 54–63. DOI: 10.1016/j. jtbi.2006.05.015
Benner, S. A., Kim, H.-J., Kim, M.-J. & Ricardo, A. Planetary Organic Chemistry and the Origins of Biomolecules // Cold Spring Harbor Perspectives in Biology, 2010, vol. 2, p. a003467. DOI: 10.1101/cshperspect.a003467
Benner, S. A., Kim, H.-J. & Carrigan, M. A. Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA // Accounts of Chemical Research, 2012, vol. 45, pp. 2025–2034. DOI: 10.1021/ar200332w
Benner, S. A., Ricardo, A. & Carrigan, M. A. Is there a common chemical model for life in the universe? // Current Opinion in Chemical Biology, 2004, vol. 8, pp. 672–689. DOI: 10.1016/j. cbpa.2004.10.003
Bernhardt, H. S. & Sandwick, R. K. Purine Biosynthetic Intermediate-Containing Ribose-Phosphate Polymers as Evolutionary Precursors to RNA // Journal of Molecular Evolution, 2014, vol. 1–14. DOI: 10.1007/s00239-014-9640-1
Bokov, K. & Steinberg, S. V. A hierarchical model for evolution of 23S ribosomal RNA // Nature, 2009, vol. 457, pp. 977–980. DOI: 10.1038/nature07749
Borowska, Z. & Mauzerall, D. Photoreduction of carbon dioxide by aqueous ferrous ion: An alternative to the strongly reducing atmosphere for the chemical origin of life // Proceedings of the National Academy of Sciences, 1988, vol. 85, pp. 6577–6580.
Bortnikova, S. B., Gavrilenko, G. M., Bessonova, E. P. & Lapukhov, A. S. The hydrogeochemistry of thermal springs on Mutnovskii Volcano, southern Kamchatka // Journal of Volcanology and Seismology, 2010, vol. 3, pp. 388–404. DOI: 10.1134/S0742046309060025
Braakman, R. & Smith, E. The Emergence and Early Evolution of Biological Carbon-Fixation // PLoS Computational Biology, 2012, vol. 8. DOI: 10.1371/journal.pcbi.1002455
Breslow, R. & Cheng, Z.-L. L-amino acids catalyze the formation of an excess of D-glyceraldehyde, and thus of other D sugars, under credible prebiotic conditions // Proceedings of the National Academy of Sciences, 2010, vol. 107, pp. 5723–5725. DOI: 10.1073/pnas.1001639107
Breslow, R. & Levine, M. S. Amplification of enantiomeric concentrations under credible prebiotic conditions // Proceedings of the National Academy of Sciences, 2006, vol. 103, pp. 12979–12980. DOI: 10.1073/pnas.0605863103
Breslow, R. The origin of homochirality in amino acids and sugars on prebiotic earth // Tetrahedron Letters, 2011, vol. 52, pp. 4228–4232. DOI: 10.1016/j. tetlet.2011.06.002
Briones, C., Stich, M. & Manrubia, S. C. The dawn of the RNA World: Toward functional complexity through ligation of random RNA oligomers // RNA, 2009, vol. 15, pp. 743–749. DOI: 10.1261/rna.1488609
Buchanan, B. B. & Arnon, D. I. A reverse KREBS cycle in photosynthesis: consensus at last // Photosynthesis Research, 1990, vol. 24, pp. 47–53.
Budisa, N. & Schulze-Makuch, D. Supercritical Carbon Dioxide and Its Potential as a Life-Sustaining Solvent in a Planetary Environment // Life, 2014, vol. 4, pp. 331–340. DOI: 10.3390/life4030331
Cahová, H., Winz, M.-L., Höfer, K., Nübel, G. & Jäschke, A. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs //