Простая одержимость — страница 17 из 76

a меньше чем 1/e, то, уйдя достаточно далеко на восток — т.е. взяв достаточно большой аргумент x, мы увидим, как кривая ln x снова пересекает кривую xa, после чего уже навсегда остается ниже нее.

Разумеется, путешествие может оказаться неблизким. Кривая ln x повторно пересекает кривую x0,3 чуть к востоку от точки x = 379; она повторно пересекает кривую x0,1 только после того, как пройдет через точку x = 332 105; и она повторно пересекает кривую x0,001 только после прохождения точки x = 3 430 631 121 407 801. Если бы мы нарисовали график функции x в степени одна триллионная (т.е. x0,000000000001), то она выглядела бы до безобразия плоской. Настолько, что ее нелегко было бы отличить от функции «остановки сердца», которая имеет высоту 1 над осью x, — ничего похожего на изящно восходящую кривую логарифмической функции. Логарифмическая кривая пересекла бы ее на малюсеньком расстоянии к востоку от e. И однако же степенная функция растет, хотя и чрезвычайно медленно, в то время как логарифмическая функция постепенно становится все более пологой. Рано или поздно они снова пересекутся, и тогда уже логарифмическая кривая навеки останется под кривой x0,000000000001. Точка пересечения в этом случае наступит при таком большом аргументе, что я не могу его здесь записать: это число начинается как 44 556 503 846 304 183… и содержит еще 13 492 301 733 606 цифр.

Картина такова, как будто ln x старается быть функцией x0. Конечно, это не x0: для любого положительного числа выражение x0 определяется равным числу 1, согласно 4-му правилу, и соответствующий график, как мы видели, — это «остановка сердца». Но хотя функция ln x и не есть x0, она умудряется при достаточно больших x поднырнуть под функцию xε со сколь угодно малым ε и оставаться там уже навсегда.[39]

В действительности дело обстоит даже еще более странным образом. Рассмотрим утверждение: «функция ln x рано или поздно будет расти медленнее, чем x0,001, и x0,000001, и x0,000000001, и …» Представим себе, что мы возвели все это утверждение в некоторую степень — скажем, в сотую. (Это, надо признать, не очень строгая математическая операция, но она приводит к верному результату.) После применения 3-го правила утверждение будет выглядеть так: «функция (ln x)100 рано или поздно будет расти медленнее, чем x0,1, и x0,0001, и x0,0000001, и …». Другими словами, если логарифм растет медленнее, чем любая степень буквы x, то это же верно и для любой степени функции ln x. Каждая из функций (ln x)2, (ln x)3, (ln x)4, …, (ln x)100, … растет медленнее, чем любая степень x. Независимо оттого, сколь велико N и сколь мало ε, график функции (ln x)N в конце концов поднырнет под график функции xε и останется там, внизу.

Такое нелегко себе представить. Функции (ln x)N растут быстро — и даже очень быстро. И тем не менее, если на рисунке 5.3 отойти достаточно далеко на восток, то рано или поздно, при некотором впечатляюще большом аргументе, каждая из них опустится ниже кривой x0,3, x0,2, x0,1 и вообще любой кривой из этого семейства, какую вы только потрудитесь нарисовать. Придется отправиться на восток в окрестность точки x = 7,9414×103959, прежде чем (ln x)100 опустится ниже, чем x0,3; и однако же это случится.


V.

Кое-что из сказанного понадобится нам прямо сейчас, а кое-что останется на потом. Но все сказанное важно для понимания Гипотезы Римана, и я призываю вас проконтролировать некоторые основные моменты — проверить, как вы их понимаете, прежде чем двигаться дальше. Для этого сгодится карманный калькулятор. Можете, например, найти ln 2 (он равен 0,693147…) и ln 3 (равный 1,098612…) и удостовериться, что при сложении их действительно получается ln 6 (равный 1,791759…). Но только обратите, пожалуйста, внимание, что (как я уже упоминал) прежде использовались логарифмы по основанию 10, так что клавиша «log» на многих карманных калькуляторах вычисляет именно десятичные логарифмы. Тот единственный логарифм, который нас здесь интересует, — логарифм по основанию e — на калькуляторе, как правило, вычисляется с помощью альтернативной клавиши, помеченной ln x. Вот эта клавиша вам и нужна. (Буква n указывает на «натуральный» логарифм; логарифм по основанию e по всем правилам называется «натуральный логарифм».)

Ну а теперь вернемся к базельской задаче.


VI.

Эйлерово решение базельской задачи прекрасно иллюстрирует сделанное в разделе I этой главы замечание, что поиск решений в замкнутом виде расширяет понимание, позволяя проникнуть в суть вещей. Эйлерово решение дало не только замкнутое выражение для ряда из обратных квадратов, но в качестве побочного продукта еще и замкнутые выражения для рядов ,  и т.д. Для четных N результат Эйлера дает в замкнутом виде точное значение для следующего бесконечного ряда (5.1):

Когда N равно двум, ряд сходится к π2/6, как уже было сказано; когда N равно 4, ряд сходится к π4/90; когда N равно 6, ряд сходится к π6/945 и т.д. Метод Эйлера дает ответ для каждого четного N. В более поздней публикации он сам добрался до N = 26, когда ряд сходится к числу 1 315 862π26/11 094 481 976 030 578 125.

А что, если N нечетное? Полученный Эйлером результат ничего про это не говорит. Как не говорит и ни один другой результат, полученный за последующие 260 лет. Нет никаких идей относительно замкнутого выражения (если таковое вообще существует) ни для , ни для аналогичного ряда при других нечетных показателях степени. Никто не смог найти замкнутое выражение для этих рядов. Мы знаем, что они сходятся, и можем, конечно, методом грубой силы вычислить их значение с любой требуемой точностью. Мы просто не знаем, что они означают. Только в 1978 году было доказано, что ряд  определяет иррациональное число.[40]

Итак, к середине XVIII века немало математиков задумывались над бесконечным рядом из выражения (5.1). Точные значения — замкнутый вид — были известны для всех четных чисел N, тогда как для нечетных можно было получать приближенные значения, беря сумму достаточного числа членов. Не будем забывать, что, когда N равно 1, соответствующий ряд становится просто гармоническим рядом, который расходится. В таблице 5.1 приведены значения выражения (5.1) (которое, напомним, есть ) с точностью до 12 знаков после запятой.

NЗначение выражения (5.1)
1(нет значения)
21,644934066848
31,202056903159
41,082323233711
51,036927755143
61,017343061984

Таблица 5.1.

Эта таблица похожа на один из тех «мгновенных снимков» некоторой функции, которые мы рассматривали в главе 3.iv. Так примерно дело и обстоит. Вспомним утверждение Гипотезы Римана, приведенное во вступлении.

Гипотеза Римана

Все нетривиальные нули дзета-функции имеют вещественную часть, равную одной второй.

Таблица 5.1 дает нам первое представление о дзета-функции Римана и тем самым представляет собой первый шаг к пониманию Гипотезы Римана.


VII.

Коль скоро в предшествующих разделах данной главы мы потрудились придать смысл степенной функции xa для любого числа a, а не просто для целых чисел, сейчас нет причины ограничивать букву N в выражении (5.1) целыми числами. Можно представить себе, как это число свободно парит, принимая различные значения — дробные, отрицательные и иррациональные. Нет, правда, гарантии, что ряд будет сходиться для всех чисел — как мы уже знаем из главы 1.iii, он не сходится при N = 1. Но можно, по крайней мере, попытать счастья, исследуя разные возможности.

В связи с осознанием этой новой мысли, сменим обозначение N на другую букву, которая имеет меньше традиционных ассоциаций с целыми числами. Очевидным выбором, конечно, была бы буква x. Но Риман в своей работе 1859 года не использовал икса. Подобные вопросы в его время не были урегулированы. Вместо этого он пользовался буквой s; а его работа 1859 года приобрела такое значение, что все математики, жившие после Римана, вслед за ним использовали ту же букву. В исследованиях, посвященных дзета-функции, аргумент всегда обозначается буквой s.

И вот наконец перед нами дзета-функция Римана (дзета, которая пишется как ζ, — это шестая буква греческого алфавита) (5.2):


VIII.

Прежде чем двигаться дальше, давайте введем полезные математические обозначения, которые сократят работу по набору формул. (Думаете, легко вставить штуки, подобные выражению