Если перемножить комплексное число с его сопряженным, то получится вещественное число: (a + bi)×(a − bi) = a2 + b2, что, как видно, есть квадрат модуля числа a + bi. На этом и основан фокус, позволяющий делить комплексные числа. Используя введенные обозначения, можно записать z×z' = |z|2, а фокус с делением выражается как z/w = (z×w')/|w|2.
Модуль комплексного числа −2,5 + 1,8i, показанного на рисунке 11.2, равен √9,49, то есть около 3,080584, фаза составляет 2,517569 радиана (или, если вам так больше нравится, 144,246113 градуса), а сопряженное число, конечно, есть −2,5 − 1,8i.
Чтобы продемонстрировать комплексную плоскость в действии, я чуть-чуть потренируюсь в анализе с комплексными числами. Рассмотрим бесконечный ряд из выражения (9.2):
1/(1 − x) = 1 + x + x2 + x3 + x4 + x5 + x6 + …
(x лежит строго между −1 и 1).
Поскольку здесь не предпринимается никаких действий, кроме сложения, умножения и деления чисел, нет причин, по которым x нельзя было бы сделать комплексным числом. Работает ли эта формула для комплексных чисел? Да, при определенных условиях. Пусть, например, x равен 1/2i. Тогда ряд сходится. Имеем
1/(1 − i/2) = 1 + 1/2i + 1/4i2 + 1/8i3 + 1/16i4 + 1/32i5 + 1/64i6 + …
Левая часть вычисляется с помощью рассмотренного выше фокуса с делением как 0,8 + 0,4i. Правую часть можно упростить, используя тот факт, что i2 = −1:
0,8 + 0,4i = 1 + 1/2i − 1/4 + 1/8i − 1/16 + 1/32i − 1/64 + …
Можно пройти правую часть этой формулы на комплексной плоскости. Идея видна из рисунка 11.3. Начнем из точки 1 (которая, разумеется, расположена на вещественной оси). Оттуда идем на север, что соответствует прибавлению 1/2i. Затем на запад на 1/4 потом на юг в соответствии с вычитанием 1/8i и т.д. Получается спираль, замыкающаяся на комплексном числе 0,8 + 0,4i. Вот вам анализ в действии — бесконечный ряд сходится к этому пределу.
Рисунок 11.3. Анализ на комплексной плоскости.
Заметим, что при переходе к комплексным числам мы потеряли простоту одного измерения, но зато приобрели некоторые преимущества наглядности. При наличии в нашем распоряжении двух измерений можно, как мы только что это и делали, демонстрировать математические результаты в виде замечательных наглядных образов и картинок. В этом до известной степени и состоит привлекательность комплексного анализа (для меня, во всяком случае). В главе 13 мы сможем увидеть дзета-функцию Римана (и саму великую Гипотезу!), выраженную в виде изящных узоров на комплексной плоскости.
Глава 12. Восьмая проблема Гильберта
Давиду Гильберту было 38 лет, когда утром в среду 8 августа 1900 года он выходил к трибуне 2-го международного конгресса математиков. Сын судьи из столицы Восточной Пруссии Кенигсберга[94], он прославился как математик за 12 лет до того, решив проблему Гордана в теории алгебраических инвариантов.
То был не просто succès d'estime, но до некоторой степени и succès de scandale.[95] Гильберт смог доказать существование объектов, но при этом не сконструировал их, не предложил даже метода для их построения. Математики говорят о таком как о «доказательстве существования». В своих лекциях Гильберт использовал следующий бытовой пример: «Среди вас имеется по крайней мере один студент — назовем его X, — в отношении которого верно следующее утверждение: ни у одного другого студента в аудитории нет на голове большего числа волос, чем у X. Кто этот студент? Этого мы никогда не узнаем; но в его существовании мы можем быть абсолютно уверены». Доказательства существования довольно распространены в современной математике и в наше время не вызывают особых возражений. Другое дело — Германия 1888 года. Лишь за год до того Леопольд Кронеккер, уважаемый член Берлинской академии наук, выступил с манифестом «О концепции числа», в котором сделал попытку изгнать из математики то, что он считал ненужным уровнем абстракции — все, по его мнению, что нельзя вывести из целых чисел за конечное число шагов. Гордан сам отозвался о гильбертовом доказательстве существования фразой, ставшей знаменитой: «Это не математика. Это теология».
Однако в целом математики признали обоснованность предложенного Гильбертом доказательства. Гильберт вслед за тем продолжил важную работу по алгебраической теории чисел и основаниям геометрии. Он дал новые блестящие доказательства — оба помещающиеся на трех с половиной страницах — трансцендентности чисел π и e. (Когда в 1882 году фон Линдеманн впервые доказал трансцендентность числа π, вышеупомянутый Кронеккер[96] похвалил его за элегантность доказательства, но добавил, что оно ничего не доказывает, ибо трансцендентные числа не существуют!) В 1895 году Гильберт получил место профессора в Геттингене, где и оставался до своего ухода на пенсию в 1930 году.
Слова «Гильберт» и «Геттинген» связаны друг с другом в головах современных математиков столь же тесно, как в других сферах связаны «Джойс» и «Дублин», «Джонсон» и «Лондон».[97] Гильберт и Геттинген играли ведущую роль в математике в течение первой трети XX века — не просто в немецкой математике, а в математике как таковой. Швейцарский физик Пауль Шеррер, студентом приехав в Геттинген в 1913 году, сообщал об обнаружении там «интеллектуальной жизни непревзойденной интенсивности». Необычайно большая доля видных математиков и физиков первой половины столетия училась или в Геттингене, или под руководством кого-то, кто сам там учился.
Относительно личности Гильберта до нас доходят несколько разнородные впечатления. Будучи вполне светским человеком, он был увлеченным танцором и пользовался популярностью как преподаватель. Не чуждался он и погони за юбками — в той весьма ограниченной степени, какая вообще была возможна в провинциальной Германии времен Вильгельма. (Впрочем, нельзя сказать, чтобы эта погоня заводила его достаточно далеко.) В нем была бунтарская жилка: похоже, он тяготился жесткой расписанностью университетской жизни, обычаями, правилами и общественными установлениями. Одна профессорская жена пришла в ужас, узнав, что Гильберта видели в дальней комнате одного из городских ресторанов, играющим в бильярд с младшими преподавателями. Когда во время Первой мировой войны университет отказался предоставить Эмми Нетер постоянную преподавательскую позицию на том основании, что она женщина[98], Гильберт просто-напросто объявил, что прочитает курс лекций, а затем предоставил Нетер их чтение. Он, по-видимому, был мягким экзаменатором, всегда готовым истолковать сомнение в пользу экзаменуемого.
И все же трудно избавиться от впечатления, что Гильберт был человеком, которому нелегко давалась терпимость к глупцам — категории, к которой он относил весьма значительную часть человечества. Для Гильберта это было тем более печально, что его единственный ребенок, Франц, страдал от серьезного умственного расстройства. Не в состоянии ни изучить как следует какой бы то ни было предмет, ни постоянно работать на одной и той же работе, Франц страдал еще и периодическими приступами паранойи, после которых в течение некоторого времени его приходилось содержать в лечебнице для душевнобольных. Зафиксировано высказывание Гильберта во время первого из этих заточений: «С этого момента мне придется считать, что у меня нет сына».
Как бы то ни было, Гильберт пользовался уважением своих студентов и коллег-математиков. Про него имеется обширное собрание анекдотов, по большей части незлых. Вот только три. Первый касается Гипотезы Римана и взят из англоязычной биографии, написанной Констанс Рид[99]:
У Гильберта был студент, который однажды показал ему работу, претендующую на доказательство Гипотезы Римана. Гильберт тщательно изучил работу; на него произвела большое впечатление глубина аргументации. Но, увы, он обнаружил там ошибку, которую даже он сам не смог устранить. На следующий год студент умер. Гильберт попросил у охваченных горем родителей разрешения выступить с речью на похоронах. Родственники и друзья студента рыдают под дождем возле могилы; Гильберт выходит вперед. Он начинает со слов о том, какая это большая трагедия, что такой одаренный молодой человек умер прежде, чем ему представилась возможность продемонстрировать, чего он в состоянии достичь. Но, продолжает Гильберт, несмотря на то что предложенное этим молодым человеком доказательство Гипотезы Римана содержало ошибку, возможно тем не менее, что однажды доказательство этой знаменитой проблемы будет получено именно на том пути, который наметил покойный. «И в самом деле, — с энтузиазмом продолжал Гильберт, стоя под дождем возл