Университетские профессора были государственными служащими и тем самым подпадали под действие декрета. Из пяти профессоров, преподававших в Геттингенском университете математику, трое — Эдмунд Ландау, Рихард Курант и Феликс Бернштейн — были евреями. У четвертого, Германа Вейля (который руководил кафедрой после Гильберта), еврейкой была жена. Только Густав Херглотц не был ничем скомпрометирован с расовой точки зрения. Правда, декрет от 7 апреля не распространялся на Ландау и Куранта, поскольку они подпадали под действие гинденбурговских изъятий. Ландау стал профессором в 1909 году, а Курант храбро сражался на Западном фронте.[142]
Однако нацисты не собирались скрупулезно придерживаться буквы закона. Не помогло и то, что Геттинген в целом достаточно сильно поддерживал Гитлера. Это относилось в равной мере и к обычным жителям, и к университетским студентам и профессорам. На выборах 1930 года в Геттингене за партию Гитлера было отдано вдвое больше голосов, чем в среднем по стране; и у нацистов было большинство в университетском студенческом союзе начиная уже с 1926 года. (Прекрасный дом, которым Эдмунд Ландау так гордился, в 1931 году был обезображен нарисованными на нем виселицами.) 26 апреля городская газета Gottinger Tageblott занимавшая активно пронацистскую позицию[143], напечатала объявление, что шесть университетских профессоров были отправлены в отпуск на неопределенный срок. Для самих профессоров это объявление явилось неожиданностью: их заранее не предупредили.
С апреля по ноябрь того года Геттинген как математический центр был фактически уничтожен. Это коснулось не только евреев, которые занимали должности в университете; под подозрение попадали все, кому приписывалось сочувствие к левым. Математики бежали — большинство в конце концов оказались в Соединенных Штатах. Всего из математического института в Геттингене уехали или были уволены 18 постоянных сотрудников.
Одним из неподчинившихся был Эдмунд Ландау (кстати, единственный профессор математики в Геттингене, посещавший городскую синагогу). Полагаясь на нерушимость прусских законов, Ландау попытался в ноябре 1933 года возобновить чтение лекций по дифференциальному и интегральному исчислению, но научный студенческий совет, узнав о его намерениях, организовал бойкот. Штурмовики в форме не пускали студентов Ландау в аудиторию. Демонстрируя недюжиную отвагу, Ландау потребовал от лидера совета, двадцатилетнего студента Освальда Тейхмюллера, в письменной форме объяснить причины бойкота. Тейхмюллер так и сделал, и это письмо каким-то образом уцелело.
Тейхмюллер был очень одаренным человеком и в действительности стал прекрасным математиком.[144] Из письма ясно видно, что мотивировка бойкота была идеологическая. Тейхмюллер искренне и всем сердцем верил в нацистские доктрины, включая расовую, и ему представлялось совершенно недопустимым, чтобы немецких студентов учили евреи. Мы привыкли воспринимать нацистских активистов как головорезов, люмпенов, приспособленцев и неудачников того или иного сорта, каковыми многие из них в самом деле являлись. Полезным, однако, бывает напоминание, что среди них встречались люди исключительно одаренные.[145]
Убитый горем Ландау уехал из Геттингена и отправился в Берлин, в свой семейный дом. Позже он несколько раз ездил за границу читать лекции, что, по-видимому, доставляло ему огромное удовольствие, однако он не собирался навсегда покидать родную землю и перебираться за границу; он умер своей смертью в Берлине в 1938 году.
Гильберт же умер в Геттингене во время войны — 14 февраля 1943 года, за три недели до своего 81-летия, вследствие осложнений после падения на улице. Не более десятка людей собрались на прощальной службе. Лишь двое из них могли похвастаться значительными математическими достижениями: физик Арнольд Зоммерфельд, бывший старым другом Гильберта, и вышеупомянутый Густав Херглотц. Родной город Гильберта Кенигсберг сровняли с землей во время войны; теперь это российский город Калининград. Геттинген в настоящее время представляет собой обычный провинциальный немецкий университет с сильным математическим факультетом.
Те годы — начало 1930-х, перед тем как сгустился мрак, — подарили нам один из самых романтических эпизодов в истории Гипотезы Римана — открытие формулы Римана-Зигеля.
Карл Людвиг Зигель, сын берлинского почтальона, преподавал во Франкфуртском университете. Состоявшийся ученый, специалист по теории чисел, он прекрасно понимал (как это должен был понимать и любой читавший ее математик), что статья Римана 1859 года представляла собой, в терминологии Эрвинга Гоффмана, с которым мы встречались в главе 4.ii, всего лишь фасад намного более масштабной конструкции, сжатое изложение для публикации гораздо большей по объему работы, проходившей, по-видимому, «за сценой». Поэтому он постарался выкроить как можно больше времени, чтобы провести его в Геттингене, просматривая относящиеся к тому периоду личные математические записи Римана и надеясь найти какие-нибудь зацепки, указывающие на ход мыслей Римана во время его работы над той статьей.
Зигель был вовсе не первым, предпринявшим такую попытку. В 1895 году Генрих Вебер закончил работу над вторым изданием «Собрания трудов» Римана, после чего отдал его бумаги на хранение в университетскую библиотеку. Когда там появился Зигель, бумаги пролежали среди архивов в Геттингене (где они находятся и по сей день, см. главу 22.i) уже 30 лет. Разные исследователи неоднократно предпринимали попытки изучить эти записи, но все в конце концов отступали перед фрагментарным и неорганизованным стилем черновиков Римана, или же, вполне вероятно, им просто не хватало математической квалификации для понимания этих записей.
Зигель был сделан из более крутого теста. Он не отступил и продолжал изучать толстые кипы небрежно исписанных листков и в результате сделал потрясающее открытие, которое и опубликовал в 1932 году в статье под названием «О Nachlass[146] Римана, относящихся к аналитической теории чисел». Это одна из ключевых работ в истории Гипотезы Римана. Чтобы объяснить суть сделанного Зигелем открытия, нам надо вернуться к вычислительной линии повествования — другими словами, к попыткам реально вычислить нули дзета-функции и проверить Гипотезу Римана экспериментально.
В нашем рассказе о вычислительном направлении в главе 12 мы остановились на Йоргене Граме, который в 1903 году опубликовал результаты вычисления 15 первых нетривиальных нулей. Работа в этом направлении не прекращается по сей день. В 1996 году на конференции по Гипотезе Римана в Сиэтле Эндрю Одлыжко представил историю вопроса, которая показана в таблице 16.1.
Исследователь(и) | Дата опубликования | Число нулей с вещественной частью 1/2 |
---|---|---|
Й. Грам | 1903 | 15 |
Р.Дж. Бэклунд | 1914 | 79 |
Дж. И. Хатчинсон | 1925 | 138 |
Э.Ч. Титчмарш и др. | 1935-1936 | 1041 |
А.М. Тьюринг | 1953 | 1054 |
Д.Х. Лемер | 1956 | 25 000 |
Н.А. Меллер | 1958 | 35 337 |
Р.Ш. Леман | 1966 | 250 000 |
Дж. Б. Россер и др. | 1969 | 3 500 000 |
Р.П. Бренти др. | 1979 | 81 000 001 |
X. те Риле, Я. ван де Луне и др. | 1986 | 1 500 000 001 |
Таблица 16.1. Вычисление нулей дзета-функции.
В конце 2000 года ван де Луне довел вычисления до 5 миллиардов нулей дзета-функции Римана, а в октябре 2001 года — до 10 миллиардов. Тем временем в августе 2001 года Себастьян Веденивски, использовав свободные процессорные мощности на 550 офисных персональных компьютерах корпорации IBM в Германии, инициировал проект по дальнейшему развитию этих вычислений. Последний опубликованный результат Веденивски датируется 1 августа 2002 года; число нетривиальных нулей с вещественной частью одна вторая доведено до 100 миллиардов.
Здесь на самом деле происходит несколько вещей сразу, и важно четко их разделять.
Во-первых, не следует смешивать а) высоту вдоль критической прямой и б) число нулей. «Высота» означает просто мнимую часть комплексного числа: высота числа 3 + 7i равна 7. При рассмотрении нулей дзета-функции принято обозначать высоту буквой t или T. (Поскольку мы знаем, что нули симметричны относительно вещественной оси, мы интересуемся только положительными t). Имеется формула для числа нулей вплоть до высоты T:
N(T) = T/2π∙ln (T/2π) − T/2π + Ο(ln T)
Это на самом деле очень хорошая формула (первые два слагаемых в ней принадлежат Риману): она дает превосходное приближение уже для достаточно малых значений T. Если не обращать внимания на член с Ο большим[147], то для T, равного 100, 1000 и 10 000 она дает соответственно 28,127, 647,741 и 10 142,090. Истинное же число нулей на этих высотах составляет 29, 649 и 10 142. Чтобы получить значение N(T) величиной в 100 миллиардов, как у Веденивски, требуется взять T равным 29 538 618 432,236… — до такой высоты Веденивски и добрался в своих исследованиях.
Далее, имеется путаница по поводу того, что именно вычисляется. Не предполагается, что Веденивски способен предъявить все 100 миллиардов этих нулей, вычисленных с высокой (или даже со средней) точностью. Цель подобных исследований состоит главным образом в подтверждении Гипотезы Римана, а это можно сделать, не прибегая к высокоточным вычислениям нулей. Имеются некоторые теоретические построения, позволяющие вычислить, сколько нулей имеется в критической полосе между высотами