Простая одержимость — страница 60 из 76

Итак: да, судя по всему, нетривиальные нули дзета-функции и собственные значения случайных эрмитовых матриц некоторым образом связаны друг с другом. Это ставит нас перед довольно серьезным вопросом, который все время висел в воздухе с момента встречи Хью Монтгомери и Фримена Дайсона в Фалд-Холл в 1972 году.

Нетривиальные нули дзета-функции Римана появились при исследовании распределения простых чисел. Собственные значения случайных эрмитовых матриц появились при исследовании поведения систем субатомных частиц, подчиняющихся законам квантовой механики. Скажите, пожалуйста, что вообще может быть общего между простыми числами и поведением субатомных частиц?

Глава 19. Поворот Золотого Ключа

I.

А теперь попытаемся проникнуть в самую сердцевину работы Римана 1859 года. Это по необходимости подразумевает знакомство с некоторым довольно продвинутым математическим аппаратом, который использовал сам Риман. Мне придется без лишних слов перескакивать через по-настоящему трудные места, преподнося их как faits accomplis[178]; я просто попытаюсь описать логические этапы в рассуждениях Римана, говоря при этом нечто вроде: «У математиков есть способ перейти от этого к этому», не объясняя, в чем же этот способ состоит и как он работает.

Я надеюсь, что у читателя в итоге сложится впечатление по крайней мере насчет общей логической канвы тех шагов, которым следовал Риман. Но даже и это не удастся без небольшой толики анализа, существенные моменты которого уже изложены в главе 7.vi-vii. Несколько следующих разделов могут показаться вам сложными. Но наградой будет результат столь же мощный, сколь и прекрасный, из которого вытекает все — сама Гипотеза, ее значение и ее связь с распределением простых чисел.


II.

Для начала выскажу нечто противоречащее тому, что было сказано в главе 3.iv. Ну, вроде как противоречащее. Там мы говорили, что не слишком интересно рисовать график функции π(N), которая подсчитывает для нас простые числа. В том месте книги так и было. А теперь это не так.

Однако сначала кое-что подкорректируем. Вместо того чтобы писать π(N), что на глаз математика выглядит как «число простых чисел, не превышающих натурального числа N», будем писать π(x), что должно означать «число простых чисел, не превышающих вещественного числа x». Ничего особенного мы не сделали. Разумеется, число простых чисел, не превышающих 37,51904283, есть просто число простых чисел, не превышающих 37 (и равно двенадцати: это 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37). Но нам предстоит познакомиться с некоторым объемом дифференциального и интегрального исчисления, и поэтому желательно находиться в царстве всех, а не одних только целых чисел.

И еще одна корректировка. При постепенном приближении к аргументу x в пределах некоторого интервала значений функция π(x) внезапно совершает прыжки. Пусть, например, x постепенно переходит от числа 10 к числу 12. Число простых чисел, не превышающих 10, равно 4 (это 2, 3, 5 и 7), так что значение функции равно 4, когда x = 10 и, равным образом, разумеется, когда x = 10,1, 10,2, 10,3 и т.д. Но при аргументе 11 это значение внезапно совершает прыжок к 5; и для 11,1, 11,2, 11,3, … оно твердо стоит на 5. Математики называют такое «ступенчатой функцией». И здесь нам потребуется корректировка, которую используют довольно часто, когда имеют дело со ступенчатыми функциями. Ровно в той точке, где π(x) совершает прыжок, присвоим ей значение, лежащее посередине между значениями, от которого и до которого она прыгает. Так, при аргументе 10,9, или 10,99, или 10,999999 функция имеет значение 4; при аргументе 11,1, или 11,01, или 11,000001 функция имеет значение 5; но при аргументе 11 это будет 4,5. Сожалею, если это представляется вам немного необычным, но это важно для наших целей. Если мы так сделаем, то все рассуждения из этой главы и из главы 21 будут иметь силу; а если нет, то они не будут работать.

Теперь можно, наконец, продемонстрировать график функции π(x) (рис. 19.1). К ступенчатым функциям не сразу привыкаешь, но с математической точки зрения они представляют собой совершенно нормальное явление. Область определения у нас сейчас — все неотрицательные числа. В этой области определения для каждого аргумента имеется единственное значение нашей функции. Дайте мне аргумент, и я скажу вам значение. В математике бывают функции и покруче.

Рисунок 19.1. Функция, считающая простые числа.


III.

Теперь введем другую функцию — также ступенчатую, но при этом слегка более хитрую, чем π(x). В статье 1859 года Риман называет ее просто «функция f», но мы вслед за Хэролдом Эдвардсом будем называть ее «функцией J». Со времен Римана математики привыкли использовать f для обозначения функции вообще: «Пусть f — произвольная функция…» — так что они могут слегка напрячься, увидев f в роли некоторой конкретной функции.

Итак, определим функцию J. Для любого неотрицательного числа x значение функции J равно

J(x) = π(x) + 1/2π(x) + 1/3π(3√x) +1/4π(4√x) + 1/5π(5√x) + …. (19.1)

Здесь «π» обозначает функцию числа простых чисел именно в том виде, как выше мы ее определили для любого вещественного числа x.

Заметим, что приведенная сумма — не бесконечная. Чтобы убедиться в этом, возьмем любое фиксированное число x, скажем, x = 100. Квадратный корень из 100 равен 10; кубический корень равен 4,641588…; корень четвертой степени равен 3,162277…; корень пятой степени 2,511886…; корень шестой степени 2,154434…; корень седьмой степени 1,930697…; корень восьмой степени 1,778279…; корень девятой степени 1,668100… и корень десятой степени равен 1,584893…. Можно было бы, конечно, вычислить и корни одиннадцатой, двенадцатой, тринадцатой степени и т.д., сколько вам заблагорассудится, но в этом нет необходимости, потому что функция числа простых чисел обладает таким очень приятным свойством: если x меньше 2, то π(x) равна нулю — просто потому, что нет никаких простых чисел, меньших 2! Таким образом, при вычислении корней из 100 можно было на самом деле остановиться после корня седьмой степени. Вот что мы в результате имеем:

J(100) = π(100) + 1/2π(10) + 1/3π(4,64…) + 1/4π(3,16…) + 1/5π(2,51…) + 1/6π(2,15…) + 0 + 0 + …,

и если теперь сосчитать число простых, то это равно

J(100) = 25 + (1/2×4) + (1/3×2) + (1/4×2) + (1/5×1) + (1/6×1),

что дает 288/15 или 28,53333…. При извлечении корней из любого числа рано или поздно значения падают ниже 2, и начиная с этого места все члены в выражении для функции J равны нулю. Поэтому для любого аргумента x значение функции J(x) можно получить, вычисляя конечную сумму — существенное улучшение по сравнению с некоторыми из функций, что нам встречались!

Как уже говорилось, функция J ступенчатая. На рисунке 19.2 показано, как она выглядит при аргументах до 10. Как видно, функция J совершает прыжок от одного значения к другому, остается на новом значении на некоторое время, потом совершает новый прыжок. Что это за прыжки? Какой закон за ними стоит?

Рисунок 19.2. Функция J(x).

Вглядевшись очень внимательно в выражение (19.1), мы увидим следующую закономерность. Во-первых, когда x — простое число, функция J(x) совершает прыжок на высоту 1, потому что π(x) — число простых чисел, не превышающих x, — при этом увеличивается на 1. Во-вторых, когда x является точным квадратом простого числа (например, x = 9, что есть квадрат числа 3), J(x) совершает прыжок на одну вторую, потому что квадратный корень из x есть простое число, а значит, π(√x) возрастает на 1. В-третьих, когда x есть точный куб простого числа (например, x = 8, что есть куб числа 2), J(x) совершает прыжок на одну треть, потому что кубичный корень из x равен простому числу, а значит, π(3x) возрастает на 1, и т.д.

Попутно заметим, что функция J обладает тем же свойством, которым мы снабдили функцию π(x): в точке, где реально происходит прыжок, она принимает значение, лежащее посередине между теми значениями, от которого и до которого она прыгает.

Для полноты представления функции J на рисунке 19.3 изображен график J(x) при аргументах до 100. Самый маленький прыжок здесь совершается при x = 64 — это число представляет собой шестую степень (64 = 26), так что функция J прыгает при x = 64 на одну шестую.

Рисунок 19.3. Еще о функции J(x).

Какую пользу может принести подобная функция? Терпение, терпение. Сначала придется совершить один из тех логических скачков, о которых я предупреждал в начале главы.


IV.

Напоминаю в который уже раз, что у математиков есть масса способов обращать соотношения. Дали нам выражение для P через