Простая одержимость — страница 75 из 76

).

• В критической полосе, т.е. при σ = 0, 1/2 и 1, нелегко сказать, какое Ο большое могло бы подойти.

Могло бы так случиться, чтобы для любого значения σ существовало определенное число μ, для которого |ζ(σ + ti)| = Ο(tμ)? Так, чтобы μ = 0, когда σ больше 1, и чтобы μ было некоторым растущим положительным числом, когда σ уходит от нуля на запад. Вроде именно так дело и обстоит. Но что же происходит в критической полосе, когда а лежит между 0 и 1? И в частности, что происходит на критической прямой, когда σ = 1/2?

Ну что же, вот перед нами (рис. П9) все, что известно на момент написания книги. Для любого заданного значения σ действительно имеется число μ, для которого |ζ(σ + ti)| = Ο(tμ+ε) для произвольно малого ε. Это не вполне то же самое, что предполагалось в предыдущем абзаце, но если вы не заметили разницы, то это простительно. (Однако если вспомнить про ε, которое появлялось у нас в главе 15.iii, то станет понятно его значение здесь). Несомненно, это число μ является функцией от σ. Отсюда и взялась функция Линделёфа μ(σ) в строке 21. Она, конечно, не имеет никакого отношения к функции Мебиуса μ из главы 15 — еще один прискорбный случай перегрузки символов.


Рисунок П9. Функция Линделёфа.

Кроме того, математически точно известно следующее.

• Когда σ меньше или равна нулю, μ(σ) = 1/2σ.

• Когда σ больше или равна единице, μ(σ) = 0.

• В критической полосе (т.е. когда σ заключена между 0 и 1, не включая границ), μ(σ) <1/2(1 − σ). Другими словами, функция μ лежит ниже штриховой линии на рисунке П9.

• Для всех значений σ функция μ(σ) выпукла вниз. Это означает, что если соединить любые две точки на ее графике прямой линией, то отсекаемая от графика функции дуга будет целиком лежать ниже (или на) полученной прямой. Это верно везде, включая и критическую полосу; отсюда следует, что для σ, заключенной между 0 и 1, функция μ(σ) должна быть положительной или равняться нулю. (Строка 27 в песне.)

• Из справедливости ГР следует и справедливость ГЛ (которую мы сформулируем прямо сейчас), но не наоборот. ГЛ — более слабый результат.

Это, повторюсь, предел нашего знания на данный момент. ГЛ, представленная на рисунке П10, утверждает, что μ(1/2) = 0, откуда легко следует, что μ(σ) = 1/2 − σ для всех значений от минус бесконечности до σ = 1/2 и μ = 0 для всех аргументов далее на восток — ср. строки 27 и 28 из песни. Это открытая гипотеза, до сих пор не доказанная. В действительности не известно ни одного значения μ(σ), когда σ лежит строго между 0 и 1. ГЛ — величайший вызов в теории дзета-функции после ГР; она оставалась предметом активных исследований, с тех пор как Линделёф высказал ее в 1908 году.

Рисунок П10. Гипотеза Линделёфа.

Строка 24. Можно доказать, что ГЛ эквивалентна утверждению, которое ограничивает число нулей дзета-функции вне критической прямой. Если ГР верна, то, конечно, таких нулей не должно быть вовсе. Но как уже отмечалось, из доказательства ГР последует и ГЛ.

Строка 31.«А ТРПЧ можно все улучшать» — т.е. получить наилучшее возможное выражение типа Ο большого для остаточного члена.

Строка 32. При обычном интегрировании, как мы определили его в главе 7.vii, интегрируют вдоль оси x, от некоторого числа a до какого-то большего числа b. При наличии комплексных переменных можно интегрировать вдоль некоторого контура — т.е. прямой или кривой линии — в комплексной плоскости, от некоторой точки на этом контуре до какой-нибудь другой точки. Обычно контур при этом надо выбирать: результат интегрирования может зависеть от того, по какому именно контуру происходит интегрирование.[220] Контурное интегрирование — одно из основных средств в аналитической теории чисел (и вообще в теории функций комплексной переменной). Для получения определенных результатов об остаточном члене надо интегрировать по контуру, который не проходит через нули дзета-функции.

Строка 33.«Вейль обратился к предмету…». В этих последних куплетах говорится об алгебраическом подходе, упоминавшемся в главе 17.iii, и о результате А. Вейля 1942 года.

Строка 34. «Используя более хитрую дзету» — другими словами, один из упоминавшихся в главе 17.iii аналогов дзета-функции, связанных с конечными полями.

Строка 35. Мы определили характеристику поля в главе 17.ii. Аналоги ГР были доказаны только для дзета-функций, связанных с полями ненулевой характеристики — т.е. характеристики, равной некоторому простому числу p.

Строка 36. «…теорема верна». Благодаря А. Вейлю известно, что аналоги ГР для этих специальных полей верны.

Строка 40. Слова «по модулю p» используются здесь в смысле арифметики циферблата из главы 6.viii; как отмечалось в главе 17.ii, здесь имеется связь с теорией полей.

В Интернете можно найти варианты этой песни, несколько отличающиеся оттого, что написан Томом; среди них я отмечу один, который заканчивается строчкой Use R.M.T. and you'll have better luck. Это добродушный пинок в сторону «физического» подхода: R.M.T. означает random matrix theory — теорию случайных матриц.

Организации и частные лица, предоставившие возможность воспроизвести портреты

Леонард Эйлер, Джордж Пойа — воспроизводится с разрешения Джеральда Александерсона. Фрагмент из письма Дж. Пойа в главе 17 — с разрешения Эндрю Одлыжко.

Петр Великий — художник Жан Марк Натье (1717). Государственный Эрмитаж, Санкт-Петербург.

Лежен Дирихле, Карл Гаусс, Давид Гильберт — Deutsches Museum.

Герцог Брауншвейгский — Braunschweigisches Landesmuseum.

Бернхард Риман — в начале 1950-х — с разрешения Михаила Монастырского; 1863 — с разрешения Staatsbibliothek zu Berlin, Preussischer Kulturbesitz.

Рихард Дедекинд, Эдмунд Ландау, Карл Зигель — Niedersächsische Staats- und Universitätsbibliothek, Göttingen; Abteilung für Handschriften und seltene Drucke.

Шарль де ля Валле Пуссен — Louvain-la-Neuve, Archives de I'Université Catholique de Louvain, CHUL.

Жак Адамар — Archives of Woodson Research Center, Fondren Library, Rice University.

П.Л. Чебышев — Государственная библиотека имени Максима Горького, Санкт-Петербургский государственный университет.

Ален Конн, Хью Монтгомери, Эндрю Одлыжко, Атле Сельберг — фотографии C.J. Mozzochi, Princeton, NJ, USA.

Годфри Хэролд Харди, Дж. И. Литлвуд — The Master and Fellows of Trinity College, Cambridge.

Йорген Педерсен Грам — фрагмент картины «Собрание Академии» П.С. Кройера, написана в 1895-1897. The Royal Danish Academy of Sciences and Letters.

Алан Тьюринг — The National Portrait Gallery, London.

Эмиль Артин — Princeton University Library.

Андре Вейль, Пьер Делинь— фотографы Herman Landshoff (Вейль), Randall Hagadorn (Делинь). Archives of the Institute for Advanced Study, Princeton.

Фримен Дайсон — с разрешения Ф. Дайсона.

сэр Майкл Берри — с разрешения М. Берри.

Эрнст Линделёф — фотография W. Sjörström (1930). Helsinki University Museum.

Харальд Крамер — с разрешения профессора Андерса Мартин-Лефа, Факультет математической статистики Стокгольмского университета.

Тай-е — фотография автора.

Примечания и дополнения автора, сделанные в середине 2003 года

A1

«В современный анализ эти концепции не допускаются». На самом деле существует «нестандартный» анализ, построенный на основе строгого определения «бесконечно малой величины». Это направление связано главным образом с работами А. Робинсона в 1960-х годах (хотя некоторые идеи восходят к Гильберту). Нестандартный анализ полностью обоснован и сам по себе достаточно интересен, но он не оказал большого влияния на текущую работу математиков в той области, о которой я пишу. И более того, моя книга направлена на объяснение обычного анализа для неспециалистов, и поэтому я не собирался отклоняться от темы в эту сторону. Наверное, следовало бы сказать «В современный стандартный анализ…», но и это уже до некоторой степени замутило бы воду. В общем, примечание с объяснением тут вполне уместно…

A2

Что касается подробностей запутанной истории с Сельбергом и Эрдешем, то мои намерения состояли в том, чтобы сохранять некоторую дистанцию, дабы самому не стать ее участником. Вокруг этой темы все еще накаляются страсти. Я столкнулся с ней только при написании книги, и, если не считать двух прочитанных (и отрецензированных) мною биографий Эрдеша, единственной точкой соприкосновения был разговор с Атле Сельбергом, состоявшийся в 2002 году. Несмотря на прошедшие 53 года, эта история явно его расстраивала.

После выхода в свет «Простой одержимости» я получил несколько бумажных и электронных писем по поводу данного раздела. Один мой корреспондент воспринял мой рассказ как «едкий сарказм» — характеристика, которая привела меня в недоумение. Всякий, кто думает, что предпоследний абзац в главе 8.iii представляет собой «едкий сарказм», просто не много оттуда понял. Я совершенно не собирался излагать это с каким бы то ни было сарказмом, а, наоборот, сохранял в споре полный нейтралитет. Однако мой собственный нейтралитет не может помешать мне сообщить следующий простой факт: большинство из тех, кто мне писал по данному поводу, выбирают сторону Сельберга, несмотря на не подлежащий сомнению факт, что Эрдеша практически все бук