Убеждать Ханса Дриша в том, что биология все же поддается научному познанию, слишком поздно, но можно хотя бы убедить друг друга не отказываться от исследований в этой области. Пусть мы пока и не знаем всего, но можем с полной уверенностью утверждать, что эмбриогенез не противоречит законам физики, а служит прекрасным примером того, как физические свойства и процессы порождают жизненные формы.
Глава 8. Конструирование органов
Как мы узнали из предыдущей главы, эмбрионы, органы и любые другие объединения клеток организуются в ответ на сигналы, специфически распределенные во времени и пространстве. Группы клеток формируют целостные сущности с уникальными биологическими ролями и уникальными физическими характеристиками. Например, наша жировая ткань мягче мышечной – любому из нас легко это проверить. Недавно мы поняли, что физические свойства не только продукт формирования тканей и органов, но и фактор, вносящий свою лепту в этот процесс. Развитие влияет на вещественные характеристики, которые, в свою очередь, влияют на развитие, и эта регуляторная петля обратной связи пополняет инструментарий самосборки. В этой главе мы узнаем, какую роль физические свойства типа мягкости и жесткости играют в организации скоплений клеток, а затем исследуем каркасы, с помощью которых когда-нибудь будем выращивать органы вне тела.
За свою жизнь вы потеряете более тонны клеток, выстилающих стенки вашего кишечника1. Вы этого даже не заметите, поскольку у вас постоянно появляются новые. Обновляются также клетки кожи, крови, иммунной системы и много чего еще. До своего появления на свет и в первые годы после него вы производили триллионы клеток множества типов: клетки печени, клетки мышц, клетки почек и так далее. Все они формировались в результате деления других клеток, и каждая из таких цепочек делений и специализаций восходила к стволовой клетке. Стволовыми называют клетки, которые еще не определились со своей идентичностью и сохраняют способность производить более одного типа клеток, включая новые стволовые клетки. Одиночная оплодотворенная яйцеклетка – это стволовая клетка, потомство которой представлено всем многообразием клеток тела. Во взрослом организме потенциал стволовых клеток ограничен гораздо сильнее. Например, стволовые клетки одного типа производят только клетки крови, включая и эритроциты, переносящие кислород, и иммунные клетки всех разновидностей. Стволовые клетки другой разновидности производят клетки эпителиальной выстилки кишечника, включая те, что всасывают питательные вещества, и те, что выделяют слизь или пищеварительные ферменты. Что же определяет, по какому из многих альтернативных путей развития пойдет стволовая клетка? Почему ее нестволовой потомок окажется, допустим, B-клеткой, дарующей иммунологическую память, а не каким-нибудь макрофагом, пожирающим отходы?
Ответ во многом зависит от диффундирующих молекул. Как мы узнали из прошлой главы, клетки реагируют на облака блуждающих молекул и настраивают экспрессию генов и другие активности, исходя из их локальных концентраций. К таким молекулам относятся гормоны, факторы роста и другие вещества, выделяемые одной клеткой и распознаваемые другой. Но для того, чтобы вершить судьбы клеток, их одних недостаточно. Недавно мы поняли, что столь же важный сигнал приходит от механической и вещественной компонент окружения.
Мозг мягкий, кости твердые, а мышцы не слишком мягкие, но и не слишком твердые. Каждая из этих тканей состоит из клеток и того, что находится за их пределами, – часто это густые сети из выделяемых клетками белков. В костной ткани в белковую сеть включаются минералы, но даже до минерализации этот материал примерно в 10 раз тверже мышечной ткани, которая, в свою очередь, примерно в 10 раз тверже головного мозга. Клетки и построенные ими каркасы влияют на жесткость, но может ли жесткость влиять на клетки?
В 2006 году Деннис Дишер и его коллеги из Пенсильванского университета опубликовали результаты важного и очень наглядного эксперимента2. Авторы выращивали стволовые клетки, из которых могут формироваться как нейроны, так и клетки – предшественницы мышечной либо костной тканей, на субстратах (специальных гелях) разной жесткости, не меняя при этом состав окружающего их бульона. Оказалось, что стволовые клетки, выращенные на самых мягких субстратах, сходных по степени жесткости с мозговой тканью, превращались в нейроны; клетки, выращенные на средах средней жесткости, давали начало предшественницам мышечных клеток, а выращенные на самых жестких субстратах, сходных по жесткости с минерализованной костью, – предшественницам клеток костей.
Эти новообретенные идентичности проявлялись не только в форме клеток – ветвистой у нейронов, удлиненной у мышечных клеток и условно многоугольной у костеобразующих, – но и в профиле экспрессии их генов. Мы уже видели чудеса самосборки: клетки организуются в структуры, словно ткань, которая сама по себе сшивается в одежду. Но оказывается, эта ткань еще чудеснее, чем мы предполагали: на мягком матрасе она превращается в ночную рубашку, а на твердом черепе – в шлем.
В определении клеточной судьбы участвуют не только биохимические, но и механические сигналы3. Механика управляет и многими другими клеточными процессами, от распознавания прикосновений до восприятия звуковых волн, от ощущения гравитации растениями до различения верха и низа. В последние два десятилетия процветает механобиология – область, изучающая механическую сигнализацию. Многое остается неизвестным, но некоторые ключевые моменты уже прорисовываются. Один из них – важность каналообразующих мембранных белков (см. главу 2), конфигурация которых может зависеть от натяжения мембраны. Связь белков с внутренней или внешней средой позволяет открывать и закрывать трансмембранные ворота. Канальные белки могут реагировать на напряжение в липидном бислое: например, при растяжении бислой может утончаться, и соответствующее укорочение его гидрофобной сердцевины (см. главу 5) может подталкивать белки к принятию иной конформации4.
Второй обширный вопрос – передача информации о силах по сети физических контактов между внутренней и внешней средами клетки. Трансмембранные белки могут связываться – часто через посредников – как с внеклеточным матриксом, так и с внутренним скелетом клетки. Ощущая изменение натяжения в клетке или прилегающих структурах, белки способны менять конформацию. При такой перестройке могут, например, обнажаться места, ранее не доступные для взаимодействий, что приводит к изменениям в параметрах связывания или химической активности белков, а далее – к активации или подавлению факторов транскрипции. Представьте, что у растянутого белка открывается сайт связывания с белком – репрессором транскрипции (на рисунке слева); изолированный таким взаимодействием репрессор уже не может связаться с ДНК. Если же белок расслаблен, сайт связывания скрыт, и свободный репрессор может, случайно блуждая, добраться до ДНК и заблокировать экспрессию своего гена-мишени (справа). Рисунок предельно упрощен по сравнению с не до конца понятным еще и очень сложным реальным механизмом клеточного ответа, но суть отражает неплохо.
Белки растягиваются, даже когда все кажется неподвижным. Внутриклеточные механизмы никогда не пребывают в покое: моторные белки (см. главу 2) перемещаются, компоненты цитоскелета растут и сокращаются – да и вся клетка постоянно вытягивается. Сети внеклеточного матрикса не активничают, однако их жесткость определяет силу, равную и противоположно направленную той, с которой они невольно действуют, и задает тем самым натяжение чувствительных связующих с податливой структурой.
Механические сигналы и вещественные характеристики окружения формируют часть регуляторной схемы жизни и закладываются в решения, принимаемые клетками в ходе самосборки. Изучить процессы в деталях непросто, но в новейших исследованиях вырисовывается их общий вид. Рассмотрим вашу кожу, слоистую ткань, которая постоянно теряет поверхностные клетки и восполняет потери благодаря стволовым клеткам, залегающим в глубине. Когда кожа надолго растягивается, в ней образуются дополнительные клетки – создается больше кожи. Эта реакция способствует не только решению кожей ее повседневных задач, но и благоприятным исходам пластических операций.
Чтобы понять, как это работает, группы Бенджамина Саймонса из Кембриджского университета и Седрика Бланпена из Брюссельского свободного университета исследовали мышей, которым под кожу вводили расширяющийся гель5. Ученые обнаружили, что растяжение кожи приводит к усилению экспрессии генов, которые кодируют моторный белок и белки, участвующие в клеточной адгезии и формировании нитей цитоскелета. Кроме того, растяжение учащало деление стволовых клеток и увеличивало долю их стволовых потомков, готовых производить еще больше кожи. Связующим звеном между растяжением и выбором клеточной судьбы служили специфические факторы транскрипции, которые ученые смогли идентифицировать. Когда мышей лишали этих факторов, стволовые клетки переставали реагировать на растяжение кожи. Пока неясно, как эти регуляторные белки связаны с динамикой цитоскелета, но мы хотя бы начинаем находить отдельные фрагменты мозаики и можем надеяться, что дальнейшая разработка этой темы приведет, например, к совершенствованию методов лечения, требующих ускоренного восстановления кожи.
Жесткость не единственная физическая характеристика, которую клетки принимают в расчет в ходе развития. Мы состоим как из твердых, так и из жидких веществ. Кровь циркулирует по артериям и венам, и этот поток жидкости может подталкивать стволовые клетки к превращению в клетки, выстилающие кровеносные сосуды6. Все наши ткани, органы и внутренние пространства обладают специфическими жесткостью, вязкостью, эластичностью и другими физическими характеристиками, возникающими в прочной связке с развитием их клеточной архитектуры. Пока мы пытаемся глубже понять это сопряжение, заметно прогрессируют подходы к конструированию многоклеточных структур, чему сильно способствует стремительное расширение знаний о роли физической среды в развитии органов.