Простое начало. Как четыре закона физики формируют живой мир — страница 32 из 59

2 = 1 миллион раз больше времени. Вместо того чтобы терпеливо ждать насыщения тканей в миллион раз дольше, крупные животные вроде нас переносят кислород в крови, прокачивая ее по кровеносной системе и подводя достаточно близко к каждой клетке, чтобы дело быстренько завершила диффузия.

Впрочем, крупным существам можно насыщаться кислородом и не прибегая к развитию органов дыхания с обширной поверхностью: для этого им нужно жить в очень богатой кислородом среде. Сейчас нет таких мест, но когда-то подобные условия были в порядке вещей. Например, в каменноугольном периоде, около 300 миллионов лет назад, концентрация кислорода в воздухе на 50 % превышала нынешнюю, и палеонтологические находки свидетельствуют о широком распространении гигантских насекомых в ту эпоху2. Доисторической стрекозе с размахом крыльев в 60 сантиметров было бы непросто выживать в нашем относительно бедном кислородом воздухе.

Поверхности влияют на многие аспекты формы животных. Лоси, живущие в холодных регионах, крупнее. Хоть белые медведи и близкие родственники бурых, они массивнее своих южных собратьев. То, что представители одного и того же вида бывают крупнее в более холодных широтах, замечали векáми. Вероятно, дело в площади поверхности. Если вы теплокровное животное, обитающее в холоде, слишком большая поверхность вашего тела становится обузой: из-за нее вы теряете больше тепла. Поскольку площадь поверхности растет пропорционально квадрату длины, а объем – пропорционально кубу, отношение площади поверхности к объему уменьшается по мере увеличения размера. Допустим, животное вырабатывает столько же тепла, сколько теряет через кожу. Если его размеры изометрически удвоить, оно будет производить в 8 раз больше тепла благодаря возросшей в 8 раз массе, зато скорость потери тепла увеличится лишь в 4 раза. Следовательно, животное будет либо перегреваться, либо – что более реалистично – требовать (и потреблять) меньше калорий на поддержание температуры тела. Получается, что у крупного животного в холоде будет больше шансов выжить, а значит, увеличение размера дает эволюционное преимущество. При прочих равных большим животным в холоде живется легче.

Животным в жарком климате, напротив, грозит перегрев, и им полезнее большая площадь поверхности, облегчающая отдачу тепла. Отношение площади поверхности к объему при малых размерах больше, поэтому при прочих равных мелким животным в жарких местах живется легче.

Разумеется, можно пойти и по пути отказа от изометрии: так произошло с ушами слона, развившими гигантскую площадь поверхности. Однако внутри вида формы не склонны меняться столь радикально – отсюда и общее правило, сформулированное в XIX веке биологом Карлом Бергманом: размер тела теплокровных животных в холодном климате обычно больше, чем в теплом. Сейчас оно известно как правило Бергмана.

Пока мы рассматривали лишь те примеры, где связанные с поверхностями закономерности влияют на форму животных. Но они же влияют и на поведение, определяя, что животным под силу, а что – нет.

Гуляющие по воде

По водной глади пруда снуют водомерки и другие насекомые. Они делают это с той же легкостью, с какой вы ходите по лужайке. Почему же вы не можете гулять по воде? Секрет водомерки не в строении ее ног, а в размере. Способности насекомого проистекают из масштабирования, а именно – из масштабирования, связанного с такой силой, как поверхностное натяжение.

Эта сила возникает на поверхности любой жидкости. Какой бы ни была жидкость, составляющие ее молекулы притягиваются друг к другу. Это неотъемлемое свойство жидкостей: если бы молекулы взаимно не притягивались, они сформировали бы скорее газ. Каждая молекула воды хочет находиться рядом с ей подобными. Каждая молекула масла хочет находиться с другими такими же. У молекул на поверхности жидкости (вроде того же пруда) примерно вдвое меньше соседей, чем у пребывающих в ее толще. Если уподобить молекулы людям, можно сказать, что обитатели поверхности несчастливы, и жидкость как целое стремится минимизировать площадь своей поверхности, чтобы несчастных молекул было как можно меньше. Более того, жидкость противится любым процессам, увеличивающим площадь ее поверхности, и поэтому возникает то самое поверхностное натяжение. Мыльные пузыри, жидкости в космосе и капли в водно-масляной смеси принимают сферическую форму именно под действием этой силы, поскольку сфера – это трехмерное тело с минимальной площадью поверхности при заданном объеме. Если же рассматривать воду в ведре или в пруду, то на нее действует гравитация и дополнительные ограничения в виде стенок резервуара, которые вместе с плоским пятном контакта вода – воздух минимизируют площадь поверхности. Любую жидкую поверхность можно считать постоянно натянутой, стремящейся максимально сократить свою площадь с учетом ограничений, накладываемых объемом жидкости и другими факторами.

Теперь мы можем понять, почему водомерка гуляет по воде. Ее ноги под действием гравитации давят на поверхность воды. Лапки водомерки гидрофобны: молекулы воды не имеют к ним сродства и предпочитают держаться друг друга, изо всех сил стараясь минимизировать общую площадь поверхности. Тонкие ноги деформируют поверхность, и вода отвечает на это силой поверхностного натяжения, пытаясь снова выровнять место контакта. Если представить процесс в целом, то касающаяся пруда нога водомерки движется вниз под действием силы притяжения, деформация водной поверхности неуклонно растет, но направленная вверх сила поверхностного натяжения делает то же самое.



Далее возможны два варианта развития событий. Если деформация такова, что сила поверхностного натяжения компенсирует силу гравитации, насекомое не разрывает поверхностную пленку и остается над водой, поддерживаемое притяжением молекул воды друг к другу. Если же сила гравитации превышает максимальную силу поверхностного натяжения, поверхность разрывается и насекомое уходит под воду. К счастью для водомерок, эволюция повела их по первому пути. Поддерживающее свойство жидкости, кстати, легко продемонстрировать, аккуратно положив металлическую скрепку на поверхность воды. Если обе они очень чистые, жидкость будет поддерживать скрепку, несмотря на куда более высокую плотность последней. Если же протолкнуть скрепку чуть глубже, она утонет, поскольку поверхностное натяжение действует только на поверхности.

Итак, мы объяснили, почему водомерка бегает по воде, но пока не понимаем, почему те же аргументы не применимы к людям. Ведь даже если на вас действует гораздо большая сила гравитации, чем на водомерку, площадь соприкосновения тела с поверхностью воды в вашем случае тоже многократно больше. Разве не должна тогда увеличиться и противодействующая сила, направленная вверх? Должна, но ее величины все равно недостаточно, чтобы вы смогли стоять на водной глади бассейна. Причина опять же в масштабировании. Сила гравитации, как мы отметили в прошлой главе, пропорциональна массе тела, а следовательно, масштабируется вместе с объемом – как куб длины. Сила же поверхностного натяжения масштабируется не как куб или хотя бы квадрат длины, а просто как длина. Куб с ребром дюймовой длины, стоящий на воде, имеет 4-дюймовый периметр, ограничивающий зону контакта.



Куб с ребром в 2 дюйма имеет 8-дюймовый периметр, что лишь вдвое больше, чем у первого куба. Вдоль этого периметра поверхность воды изогнута и растянута относительно плоских зон, и потому именно пропорционально длине ребра масштабируется сила поверхностного натяжения. При прочих равных на одно животное, которое в 10 раз больше другого, действует увеличенная в 1000 раз сила притяжения, направленная вниз, а вот возникающая в жидкости сила, направленная вверх, оказывается больше лишь в 10 раз. Некрупное животное может удержаться на поверхности жидкости, но если мы представим, что оно растет, его тело очень быстро достигнет размера, при котором гравитационная сила окажется слишком велика, чтобы ей противостоять. Такой переход случается уже при размере в несколько миллиметров. Пока животное меньше, ему несложно держаться на воде за счет поверхностного натяжения, но как только оно пересекает этот рубеж, любые попытки обречены на провал.

Другим примером влияния поверхностного натяжения может служить поведение особой группы муравьев. Огненные муравьи – это несколько видов агрессивных муравьев, укусы которых особенно болезненны и сопровождаются жжением, собственно, и давшим им название. Эти насекомые живут в тропиках, где сильные ливни могут затапливать места их обитания, поэтому муравьям нередко приходится удерживаться на водной поверхности, сохраняясь при этом как колония3. Хотя насекомые и плотнее воды, один муравей невелик: как и водомерка, он может стоять на воде благодаря поверхностному натяжению. Но вот группа муравьев, в которой особи цепляются друг за друга, чтобы не потеряться, уже сталкивается с проблемой. Чем группа больше, тем сильнее разрыв между ее массой и поддерживающей силой поверхностного натяжения, которые масштабируются по описанным выше законам. Когда число муравьев превышает несколько десятков, гравитация перебарывает поверхностное натяжение и группа тонет. Ситуация лишь немногим улучшается, если вместо трехмерного клубка муравьи организуются в двухмерный плот: масса плоского плота увеличивается пропорционально квадрату длины, а поверхностное натяжение – пропорционально простой длине, поэтому баланс довольно быстро нарушается. Казалось бы, физика масштабирования ставит муравьев перед выбором рассредоточиться либо утонуть. Но эти насекомые нашли хитроумное решение – воздушные пузыри. Поверхность муравья гидрофобна, и он может прижимать пузырь к своему телу, как мать прижимает ребенка. Муравьиный плот прикрепляется к крупному воздушному пузырю, и плавучий пузырь не позволяет гравитации утянуть всех вниз. Поскольку поверхностное натяжение не в состоянии спасти муравьев, они делают ставку на низкую плотность воздуха и работают с другой частью уравнения – силой притяжения.