Простое начало. Как четыре закона физики формируют живой мир — страница 38 из 59

пирофосфат. Особый белок в составе смеси для пиросеквенирования превращает пирофосфат в АТФ – энергетическую молекулу, которую клетки используют для разных операций. Одна из них – светоиспускающая химическая реакция, выполняемая белками люциферазами, которые расходуют АТФ в качестве топлива. (В переводе с латыни lucifer означает «несущий свет».) Такие организмы, как светлячки, жуки-щелкуны и светящиеся грибы, сами производят люциферазы. Как мы узнали, рассматривая в главе 2 зеленый флуоресцентный белок медузы, многообразие жизни предоставляет нам уйму инструментов, которые можно творчески приспособить для множества задач.

Пиросеквенирование работает следующим образом. Как и в методе Сэнгера, все начинается с множественного копирования фрагментов ДНК и их разделения на одиночные цепи нагреванием. И снова ДНК-полимераза строит вторую, комплементарную цепь по матрице одиночной. Представьте, что у нас в реакционной лунке закреплена единственная одноцепочечная молекула ДНК. Ученый наливает в эту лунку раствор, содержащий люциферазу и другие ингредиенты, но из четырех типов нуклеотидов там есть только один – скажем, А. Если за этим следует световой импульс, значит, ДНК-полимераза встроила А в растущую цепь, то есть он оказался подходящим, комплементарным первому неспаренному нуклеотиду матрицы. Если вспышки нет, А не подошел и нужно пробовать другие нуклеотиды. Ученый выливает из лунки раствор с A и трижды повторяет процесс – с Ц, Г и T. Лишь в одном случае из четырех он видит вспышку света. Теперь очередная буква известна. Повторяя процесс снова, он по излучению кванта света узнает следующую букву, затем еще одну и так далее. То есть ДНК читается по мере синтеза ее комплемента.

Я не объяснил, как можно распараллелить процесс. Помимо этой задачи у метода крайне высоки требования к чувствительности: высвобождение единственного пирофосфата должно неизбежно вести к тому, чтобы единственная люцифераза испустила одиночный, очень слабый световой импульс, который мы во что бы то ни стало обязаны засечь. Если на любом из этапов произойдет сбой, мы пропустим букву. Обе задачи, параллелизм и надежность, решаются с помощью одной физической тактики – объединения идентичных фрагментов ДНК в массивы.

Как и в секвенировании по Сэнгеру, геномную ДНК дробят на случайные фрагменты длиной до тысячи оснований, к их концам пришивают короткие универсальные адаптеры с известными нуклеотидными последовательностями. Затем плавлением разделяют все фрагменты на отдельные цепи (см. главу 1) и смешивают в растворе с микроскопическими шариками, к поверхности которых привязаны маленькие «якоря», комплементарные одному из ДНК-адаптеров. Пропорции смеси продумывают так, чтобы шариков оказалось значительно больше, чем ДНК, и вероятность заякоривания на каждом шарике сразу нескольких фрагментов ДНК стремилась к нулю.



Шарики и ДНК плавают в водном растворе. Если смешать его с маслом, при взбалтывании или в потоке образуются окруженные маслом капли раствора, заключающие в себе не более одного шарика и размером не сильно его превосходящие.



Те самые «якоря» на поверхности шариков служат праймерами для инициации синтеза цепи ДНК, комплементарной взаимодействующему с якорем фрагменту. В каждой капле раствора содержится все необходимое для ПЦР[52]: ДНК-полимераза, нуклеотиды и праймеры для последующих раундов репликации. Так в капле можно создать около миллиона копий исходного фрагмента. По окончании репликации капли собирают вместе и добавляют к ним мыло или спирт, чтобы уменьшить силу поверхностного натяжения, благодаря которой каждая капля в масле оставалась изолированной (см. главу 11). Капли сливаются, и раствор течет по плашке с крошечными лунками диаметром чуть больше шарика. В результате в каждую лунку попадает по одной сфере, покрытой множеством одинаковых двуцепочечных ДНК; одна из цепей каждого дуплекса удерживается на шарике якорными праймерами. Когда мы плавим эту ДНК и смываем высвобожденные нити, у нас остается множество распределенных по лункам сфер, каждая из которых покрыта своим типом леса из идентичных однонитевых ДНК.



Теперь можно приступать к пиросеквенированию и фиксировать в каждой лунке вспышки света. Они возникают то и дело по мере синтеза цепей ДНК, комплементарных миллиону связанных с шариком матриц. Соответственно, вспышки эти в миллион раз ярче, чем при испускании света одной молекулой ДНК. Если в последовательности ДНК несколько раз подряд повторяется одна и та же буква, яркость вспышки растет пропорционально числу повторов (до некоторого предела): двойная А, например, дает вспышку вдвое ярче. Ученые, а точнее их аппараты, фиксируют последовательность и интенсивность световых сигналов и таким образом читают ДНК.

Эта сложная схема действительно работает и благодаря приемлемой надежности стала первым коммерциализированным методом секвенирования нового поколения: в 2005 году его вывела на рынок компания 454 Life Sciences. Примерно за 500 тысяч долларов можно было купить прибор для пиросеквенирования, выдающий в виде длинной череды букв нуклеотидную последовательность загруженной в него ДНК6. При такой стоимости вы вряд ли украсили бы им свою гостиную, но исследовательским институтам среднего размера он был вполне по карману. (Для сравнения: в 2005 году дом в США можно было купить в среднем за 240 тысяч долларов.) Сегодня пиросеквенаторы не продаются: их уже успели вытеснить новые, не менее впечатляющие технологии.

В близком к пиросеквенированию методе – полупроводниковом секвенировании – ставка делается на другой элемент, высвобождаемый при встраивании нуклеотида в растущую нить ДНК7. Он настолько мал и вроде бы незначителен, что опора на его детекцию кажется совсем уж удивительной. Это одиночный протон. Все, что окружает нас, состоит из протонов, нейтронов и электронов. Легчайший из химических элементов, водород, представляет собой совокупность одного положительно заряженного протона и одного отрицательно заряженного электрона. Одинокий протон и того меньше. Обнаруживать его быстро и надежно позволяет совершенно не биологическая технология – транзистор.

Транзисторы – основные компоненты электрических схем мобильных телефонов, компьютеров и несметного числа других электронных устройств. В каждом транзисторе электрический ток течет от одной точки к другой, ориентируясь на указания, поступающие из третьей точки, примерно как движение речных судов подчиняется командам оператора разводного моста. В так называемых полевых транзисторах контролирующим фактором выступает электрическое поле – например, поле протона, находящегося вблизи поверхности транзистора.

Как и при пиросеквенировании, шарики, покрытые фрагментами клонированной ДНК, распределяются по отдельным микролункам. Но эти лунки размещены на полупроводниковом чипе, где у дна каждой из них работает особый полевой транзистор. Вместо вспышек света здесь регистрируются импульсы электрического тока[53]. Эту технологию коммерциализировала компания Ion Torrent, основанная весьма продуктивным биотехнологом Джонатаном Ротбергом, который раньше возглавлял 454 Life Sciences. Ion Torrent представила свой секвенатор Personal Genome Machine в 2010 году8. Он умещался на столе и стоил всего 50 тысяч долларов – меньше удвоенной средней стоимости нового автомобиля в том же году.

Однако господствующая технология секвенирования нового поколения полагается на искусную химическую модификацию ДНК, а не на замысловатую детекцию встраивания нуклеотидов9. Как вы помните, в секвенировании по Сэнгеру рост новой цепи ДНК прерывается присоединением модифицированного нуклеотида. К концу 1990-х созрело более гибкое решение – обратимо терминирующие и флуоресцирующие нуклеотиды. Во время репликации, то есть синтеза комплементарной цепи, изучаемого ДНК-фрагмента ученый вводит модифицированные A, Ц, Г или T, каждый из которых флуоресцирует уникальным цветом и обрывает дальнейшее наращивание цепи[54]. После отмывки образца от не встроившихся молекул ученый с помощью лазера регистрирует цвет только что добавленного в цепь нуклеотида. Флуоресцирующий участок и участок, блокирущий работу полимеразы, крепятся к нормальному «телу» нуклеотида цепочкой из атомов, которую можно химически расщеплять. После обработки расщепляющими агентами ученый получает обычную, без терминаторов и меток ДНК, готовую к присоединению следующего нуклеотида, и так процесс раз за разом повторяется. Как правило, реакции проводят на стеклянных плашках, усеянных кластерами реплицирующихся фрагментов ДНК, а камеры фиксируют цветовые вспышки, которые появляются и исчезают в каждом кластере.

Эта технология известна как метод Illumina – по названию компании, которая приобрела ее разработчика. Инструментарий для такого секвенирования стоит где-то от 100 тысяч до миллионов долларов в зависимости, например, от количества оснований, определяемых за одно прочтение. Как и в других технологиях секвенирования, нужно немало времени и денег, чтобы подготовить образцы ДНК, стеклянные плашки с образцами или другие платформы. Без учета расходов на покупку секвенатора прочитать миллиард ДНК-оснований методом Illumina стоит от 5 до 150 долларов, а методом полупроводникового секвенирования – около 10 тысяч долларов, и это существенно повышает привлекательность первого метода. Ниже я еще вернусь к вопросу стоимости, но хочу отметить, что все эти суммы в любом случае гораздо меньше тех 3 миллиардов долларов, которые ушли на секвенирование 3 миллиардов оснований в исходном проекте «Геном человека».

Читаем слова по одному

Провести черту между вторым и третьим поколениями методов секвенирования сложнее, чем между первым и вторым. Новые техники появляются не взрывоподобно, перемежаясь затишьями, а рождаются в результате непрерывной деятельности на множестве пересекающихся фронтов. Но все же есть удобный и относительно корректный с хронологической точки зрения способ выделить третье поколение: эти методы предполагают секвенирование