В 1954 году были опубликованы результаты аналогичного независимого исследования, с охватом в 190 тысяч американцев. Выводы были также неутешительные (вспомним про независимые подтверждения). Подоспели исследования другого характера: опыты на мышах показали канцерогенность табачного дыма (вспомним про подтверждения альтернативными методиками).
«Эти изобличающие доказательства потрясли Долла не меньше всех остальных: „Я сам не ожидал, что курение окажется такой серьезной проблемой. Если бы я тогда держал пари на деньги, то, пожалуй, поставил бы на что-то, связанное с дорогами и автомобилями“. Долл и Хилл приступали к своему исследованию без прицела на конкретный результат, они были попросту любопытны и хотели докопаться до истины. Вообще, хорошо продуманные научные испытания не затеваются с расчетом на ожидаемый исход, напротив, они должны быть честными и прозрачными, а тем, кто их проводит, следует быть готовыми к любым итогам».
Эксперимент Хилла и Долла стал новаторским и в плане научной методологии. Была показана важность медицинской статистики для здравоохранения[91]. Благодаря Хиллу и Доллу, а также последовавшим за ними независимым исследованиям с аналогичными результатами, накопившийся массив информации оказался столь очевиден, показателен и бескомпромиссен, что долго сопротивляться ему не смогли даже могущественные табачные корпорации – они постепенно начали сдавать позиции. Вот это я называю силой доказательств!
Вы все еще курите? Не пора ли задуматься?
Обычный человек плохо разбирается в статистике. Этому есть ряд причин. Во-первых, теория вероятности и математическая статистика довольно сложны. Конечно, базовые понятия статистики вполне под силу для понимания среднему по успеваемости школьнику, но и они часто бывают контринтуитивны.
– Какова вероятность встретить динозавра на улице?
– 50 процентов. Либо встретишь, либо нет.
Прикладные вопросы математической статистики и теории вероятности мало изучают в школе. Даже в технических вузах часто делается акцент на скучной теории и абстрактных задачах (вроде раскладывания цветных шаров по коробкам), но не на жизненных примерах. А зря. Понимание статистических закономерностей позволяет разбираться в важных вопросах и не поддаваться на разные шарлатанские уловки.
Ваш друг десять раз подряд подбросил монетку и записал результаты на листке бумаги («О» – орел, «Р» – решка). Какой из трех вариантов результата наиболее вероятен?
1. ОРОРОРОРОР
2. ОРРОРООООР
3. РРРРРРРРРР
Рискну предположить, что вы выбрали второй вариант. Да, действительно, он кажется чем-то «более естественным» для результатов броска монеты. А вот выпадение решки десять раз подряд нам покажется некоей махинацией либо мистикой. На самом же деле все три варианта имеют одинаковую очень маленькую вероятность (ее даже можно рассчитать: 1 к 210). И это легко проверить: попытайтесь воспроизвести любую из них. Подобных хитрых трюков теория вероятности и математическая статистика знают очень много.
Статистика – замечательный инструмент для анализа информации и различных исследований. Но, как и любой другой инструмент, ее можно использовать как во благо, так и во вред. Поскольку для многих людей фраза «по статистике…» звучит довольно убедительно, мы часто сталкиваемся с различными статистическими манипуляциями. Искаженное восприятие информации может происходить вследствие: а) незнания основ статистики; б) неучтенных факторов (ошибочная оценка); в) намеренной фальсификации.
«Средняя зарплата по вузу – 30 тысяч рублей», – заявляет ректор института на собрании преподавательского состава. Кто-то иронично улыбается, кто-то с грустью вспоминает в расчетном листе свои 12 тысяч 500 рублей. И у всех один вопрос: откуда ректор взял эти цифры?
Ответ кроется за загадочным словом «средняя». Вряд ли имеет смысл откровенно лгать, когда можно немного поиграть с цифрами. При подробном рассмотрении окажется, что в расчет включены все заработки, включая доход от большого бизнеса нескольких самых богатых сотрудников вуза, занимающих высокие административные посты. Имело бы смысл, разбить доход по группам с указанием количества сотрудников, получающих тот или иной доход. Но цифра в 30 тысяч, согласитесь, звучит убедительнее (особенно, если ее подавать в отчете для Министерства образования и науки).
«Ученые признают свое бессилие перед проблемой возникновения жизни. Вероятность самопроизвольного зарождения жизни на Земле столь уничтожающе мала, что даже самые закоренелые скептики сдаются: для зарождения жизни необходима внешняя разумная причина», – примерно так выглядит типичный аргумент антиэволюционистов по вопросу происхождения жизни. Но на самом деле низкая вероятность зарождения жизни – не повод отказываться от теории абиогенеза[92]. И вот почему.
Во-первых, у нас нет достаточного количества данных, чтобы точно оценить вероятность абиогенного возникновения жизни. Вполне возможно, это не такое маловероятное событие, как нам кажется.
Во-вторых, сколько подходящих мест для появления жизни нам нужно рассмотреть? Давайте оценим количество планет в наблюдаемой Вселенной. По оценкам ученых, только в нашей Галактике содержится от 200 до 400 миллиардов звезд. Возьмем для среднестатистической галактики условную низкую оценку – 100 миллиардов звезд. Количество галактик в известной Вселенной тоже не меньше 100 миллиардов. Число планет в звездных системах сопоставимо с количеством звезд. Возьмем нижнюю оценку: «Одна звезда – одна планета» (на самом деле у многих звезд по нескольку планет). Таким образом, примерное количество планет в известной нам Вселенной равно 100 миллиардов умножить на 100 миллиардов (100000000000 × 100000000000 = 1022), то есть десять секстиллионов.
Теперь пусть вероятность зарождения жизни составляет «один шанс на миллион». Значит, жизнь должна зародиться на одной миллионной части всех планет Вселенной, то есть число планет с жизнью равно одной миллионной, умноженной на десять секстиллионов. Мы получим 1016 планет или десять квадриллионов (единица с шестнадцатью нулями). Сложно представить это число, это очень и очень много. При такой оценке даже в нашем Млечном Пути должно существовать минимум 200 тысяч обитаемых планет (одна миллионная умножается на 200 миллиардов).
Хорошо, допустим, мы погорячились. Пусть шанс зарождения жизни «один на миллиард». Тогда обитаемых планет в нашей Галактике должно быть целых двести. А во всей наблюдаемой Вселенной – 1013 или десять триллионов. И это мы взяли заниженные оценки числа планет и рассматриваем только наблюдаемую Вселенную. А за границей наблюдения тоже есть галактики, звезды и планеты. Даже если учесть тот факт, что для зарождения жизни земного типа подходят не все планеты, даже если землеподобные планеты составляют 5-10 % от всего количества – все равно получается огромное число. Так что все у ученых хорошо, оптимизм можно не терять. Закон больших чисел в действии: даже маловероятное событие при огромном количестве повторений наверняка случится. Из секстиллионов планет, подходящих для зарождения жизни, по крайней мере на одной жизнь точно зародилась. Наверное, есть и другие.
Похожая ситуация обстоит с так называемым предвидением. Мы часто слышим истории про «вещие сны». И для многих людей это является доказательством существования каких-то незримых тонких сил или чего-то непознанного и сверхъестественного. Человеку снится сон, что его завтрашняя поездка в соседний город закончится автокатастрофой. Сон настолько яркий, что он передумывает ехать и сдает автобусный билет в кассу, а через пару дней узнает, что его автобус попал в серьезную аварию. Может быть, тонкие миры и сверхъестественные предупреждения существуют, но рассмотрим и более рациональное объяснение.
В среднем за 70 лет жизни человек спит около 23 лет. Из этих 23 лет – восемь лет – это сновидения. Человек спит каждый день, и, допустим, за один акт сна может увидеть 5-10 ярких образов-сновидений. Для простоты будем считать, что каждый человек в среднем за время сна видит ровно один отчетливый сон. Из семи с половиной миллиардов людей, живущих на Земле, выделим пять миллиардов спящих и помнящих сны (остальные 2 миллиарда – маленькие дети, сильно пожилые и немощные люди, а также больные и люди в одиночестве, которым не с кем поделиться своими предвидениями). Значит, мы получим 5 миллиардов сновидений за сутки. Теперь пусть шанс увидеть «вещий сон» как результат обычного случайного совпадения составляет один на миллион. Тогда каждый день на Земле должно случаться не менее 5000 вещих снов[93]. Современные технологии распространения информации позволяют успешно тиражировать истории о сбывшихся снах и предчувствиях. И вот уже в массовом сознании укореняется идея о том, что «Вселенная может предупредить нас о несчастье». Правда, остается без ответа вопрос, по какому принципу Вселенная выбирает человека для предупреждения. Кроме того, истории о несбывшихся снах мы обычно никому не рассказываем («Представляешь, вчера сон приснился хороший. Думал, сбудется. А он не сбылся»).
Кстати, а что там у экстрасенсов? Критик паранормального Джонатан Смит приводит интересный пример с экстрасенсом мадам Фебой. Мадам Феба каждую неделю обращается на своем выступлении к группе из 75 слушателей. В качестве демонстрации своих экстрасенсорных способностей она проводит эффектный трюк: гаснет свет, мадам закрывает глаза, поднимает руки и приглушенным голосом произносит: «Я заявляю, что в комнате присутствует два человека, родившихся в один день. В один и тот же день и месяц». После этого все присутствующие пишут свои даты рождения на листочках, и после проверки листочков добровольцами выясняется, что мадам Феба права. Примечательно, что подобное заявление мадам делала сотни раз и практически всегда угадывала. Может быть, все это результат предварительной подготовки – слушатели заранее отбираются с учетом дат рождения? Но вроде все честно, посетители не отбираются заранее. Тогда мы вынуждены признать наличие у мадам Фебы неких тонких интуитивных чувств? Не будем торопиться с выводами. На самом деле мы столкнулись здесь с обычным математическим трюком, его иногда так и называют «парадокс дней рождения».