А если в процессе развития действуют определенные типы стрессоров, то некоторые из таких «решений» повышают риск определенных заболеваний.
Например, женщина забеременела в голодное время. Она получает недостаточно калорий, как и плод. Оказывается, что на поздних стадиях беременности эмбрион усваивает информацию о том, сколько еды есть во внешнем мире, а голод означает, что еды не хватает и поэтому нужно запасать каждую крошку. В метаболизме этого эмбриона происходят определенные сдвиги — их называют метаболическим «импринтингом» или «программированием». На протяжении всей жизни организм этого человека будет очень хорошо запасать питательные вещества, сохранять каждую крупицу драгоценной соли. У него возникнет то, что называют «бережливым» метаболизмом.
Каковы последствия? Внезапно мы снова оказываемся в середине глав 3 и 4. При прочих равных условиях, даже на поздних этапах жизни, такой организм будет больше подвержен риску гипертонии, тучности, диабета второго типа и сердечно-сосудистых заболеваний.
Что интересно, этот процесс одинаково устроен у крыс, свиней и овец. И у людей тоже. Самый драматичный и показательный пример связан с голодом в Голландии в конце Второй мировой войны.
Нацистов-оккупантов теснили на всех фронтах, голландцы помогали союзникам, пришедшим их освобождать. В наказание нацисты полностью прекратили поставки продовольствия. Всю зиму голландцы голодали. Люди потребляли меньше тысячи калорий в день, были вынуждены питаться луковицами тюльпанов, от голода умерли 16 тысяч человек. Эмбрионы, занимавшиеся в ту зиму программированием своего метаболизма на всю последующую жизнь, получили жестокие уроки о доступности пищи. В результате полвека спустя появилась большая группа людей с «бережливым» метаболизмом и высоким риском метаболического синдрома. По-видимому, различные аспекты метаболизма и физиологии программируются на разных этапах эмбрионального развития. Если во время голода вы были эмбрионом первого триместра, это программирует вас на болезни сердца, ожирение и нездоровый уровень холестерина, а если вы были эмбрионом второго или третьего триместра, это программирует вас на повышенный риск диабета.
Возможно, дело не только в том, что вы недоедали, когда были эмбрионом, но и в том, что после рождения у вас было много еды и вы смогли быстро оправиться от голода. Таким образом, в раннем детстве вы не только научились очень хорошо запасать питательные вещества, но и имели доступ к достаточному их количеству[31].
Так что если вы беременны, не морите своего ребенка голодом. Но этот феномен также относится к менее драматическим ситуациям. В рамках нормального диапазона веса новорожденных чем меньше вес ребенка (с учетом роста), тем больше риск проблем с метаболизмом во взрослой жизни. Даже если став взрослым, человек контролирует свой вес, низкий вес при рождении указывает на повышенный риск диабета и гипертонии.
Это важные факторы. Сравнивая тех, кто родился с самым большим весом, и тех, кто родился с самым маленьким весом, мы видим примерно восьмикратную разницу в риске развития преддиабета и 18-кратную разницу — метаболического синдрома. И среди мужчин, и среди женщин, сравнивая тех, чей вес при рождении входил в самые низкие 25%, с теми, чей вес относился к самым высоким 25%, мы видим, что в первой группе риск умереть от болезней сердца на 50% выше.
Такая взаимосвязь питания в эмбриональный период и рисков нарушения обмена веществ и сердечно-сосудистых заболеваний во взрослой жизни впервые была описана эпидемиологом Дэвидом Баркером из Саутгемп- тонского госпиталя, Англия. Сегодня заболевания, относящиеся к этой категории, называют заболеваниями взрослых фетального происхождения СЗВФП). И в этой области нам предстоит сделать еще очень много.
Очевидно, недоедание — серьезный стрессор, и это поднимает вопрос о том, чем вызвано программирование метаболизма — последствиями недостатка калорий и/или стрессом, вызванным недостатком калорий. Иначе говоря, вызывают ли стрессы во время беременности, не связанные с питанием, эффекты, подобные ЗВФП? Да, вызывают.
Обширная литература, опубликованная в течение нескольких последних десятилетий, показывает, что любые стрессы, которым подвергается самка крысы во время беременности, приводят к пожизненным изменениям в физиологии ее потомства. Очевидно, одно из таких изменений связано с выработкой глюкокортикоидов. Вспомним, что эмбрион «учится» реагировать на внешний мир, «запоминая» например, сколько в нем стрессов. Эмбрион улавливает сигналы стресса от матери, поскольку глюкокортикоиды легко поступают в его кровеносную систему, и чем больше глюкокортикоидов, тем быстрее эмбрион «понимает», что во внешнем мире полным-полно стрессов. Результат? Будь готов к этому жестокому миру: вырабатывай много глюкокортикоидов. Крысы, подвергавшиеся стрессу в пренатальный период, превращаются во взрослых с повышенным уровнем глюкокортикоидов — в зависимости от исследования у них отмечается повышенный базовый уровень глюкокортикоидов, более выраженная реакция на стресс и/или медленное и неполное восстановление после нее. Возможно, пожизненное программирование происходит из-за постоянного уменьшения в определенной части мозга количества рецепторов, реагирующих на глюкокортикоиды. Определенный отдел головного мозга отвечает за отключение реакции на стресс, угнетая выделение КРГ. Чем меньше глюкокортикоидных рецепторов, тем меньше чувствительности к сигналам гормонов и тем менее эффективно подавляется последующая выработка глюкокортикоидов. Результат — пожизненная склонность к их повышенному уровню.
Можно ли утверждать, что выработка глюкокортикоидов беременной самкой, переживающей стресс, дает начало этим постоянным изменениям в физиологии потомства? Похоже, что да. Этот эффект отмечен у многих видов, включая нечеловекообразных приматов, когда беременных самок не подвергали стрессу, а вводили им глюкокортикоиды.
Не столь обширная, но весьма убедительная литература показывает, что пренатальный стресс программирует человека на более высокий уровень глюкокортикоидов во взрослой жизни. В таких исследованиях низкий вес при рождении (с учетом роста) используется в качестве суррогатного маркера для стрессоров во время беременности, и чем ниже вес при рождении, тем выше базовый уровень глюкокортикоидов у взрослых в возрасте от 20 до 70 лет; эта взаимосвязь становится еще более явной, если низкий вес при рождении сочетается с недоношенностью[32].
Слишком большое количество глюкокортикоидов в эмбриональный период, видимо, также способствует пожизненному увеличению риска метаболического синдрома. Например, если эмбрион крысы, овцы или нечеловекообразного примата получает большое количество синтетических глюкокортикоидов на последних стадиях беременности (когда они вводятся матери), у этого эмбриона увеличится риск развития симптомов метаболического синдрома во взрослой жизни. Как это происходит? Вероятная последовательность такова: высокий уровень глюкокортикоидов в пренатальный период приводит к повышенному уровню глюкокортикоидов во взрослой жизни, а это увеличивает риск метаболического синдрома. Тем читателям, которые еще не забыли, о чем мы говорили в предыдущих главах, будет несложно вспомнить, как избыток глюкокортикоидов во взрослой жизни может увеличить риск ожирения, диабета второго типа и гипертонии. Несмотря на эти потенциальные взаимосвязи, повышенный уровень глюкокортикоидов во взрослой жизни, вероятно, лишь один из признаков, связывающих пренатальный стресс с метаболическим синдромом у взрослого человека.
Итак, теперь мы имеем гипертонию, диабет, сердечно-сосудистые заболевания, ожирение и избыток глюкокортикоидов. Давайте еще больше усложним ситуацию. Как насчет репродуктивной системы? Обширная литература показывает, что если подвергнуть беременных крыс стрессу, это «феминизирует» мужские эмбрионы. Став взрослыми, они будут менее сексуально активными, и их гениталии будут менее развитыми. Как мы увидим в следующей главе, стресс угнетает выработку тестостерона и, кажется, это происходит даже у мужских эмбрионов. Кроме того, у глюкокортикоидов и тестостерона — похожая химическая структура (и то и другое — «стероидные» гормоны), и избыток глюкокортикоидов у эмбриона может засорять и блокировать рецепторы тестостерона. В итоге влияние тестостерона снижается.
Больше проблем с ЗВФП. Если подвергнуть беременную крысу серьезному стрессу, у ее потомства разовьется повышенная тревожность. Как понять, что крыса тревожна? Вы помещаете ее в новое (и поэтому по определению пугающее) окружение; сколько времени ей понадобится, чтобы его исследовать? Или можно использовать тот факт, что крысы—ночные животные и не любят яркого света. Возьмите голодную крысу и положите немного еды в центр ярко освещенной клетки; как быстро крыса подойдет к еде? Насколько легко крыса способна учиться в новом окружении или взаимодействовать с незнакомыми крысами? Насколько обильна у нее дефекация в новой обстановке?[33] Крысы, пережившие стресс в пренатальный период, став взрослыми, пассивны в ярко освещенном помещении, неспособны учиться в новом окружении, и у них очень обильная дефекация. Печальная картина. Как мы увидим в главе 15, тревожность связана со структурой мозга, которая называется «миндалевидное тело», и пренатальный стресс задает пожизненный тип ее функционирования, связанный с высокой тревожностью. В миндалевидном теле возникает больше рецепторов (то есть оно становится более чувствительным) к глюкокортикоидам, больше нейромедиаторов, вызывающих тревожность, и меньше рецепторов для химического компонента, снижающего тревожность[34]. Приводит ли пренатальный стресс у человека к повышенной тревожности во взрослом возрасте? У людей этот вопрос изучать сложно, поскольку трудно найти матерей, испытывавших тревожность только во время беременности или только тогда, когда ребенок был маленьким, но не в обоих случаях сразу. Поэтому относительно человека данных пока недостаточно.