Психология стресса — страница 53 из 114

Мы возвращаемся к склонности очень старых крыс, людей и приматов иметь в состоянии покоя повышенный уровень глюкокортикоидов в крови. В процессе старения нарушаются некоторые аспекты регулирования нормальной секреции глюкокортикоидов. Чтобы понять, почему это происходит, мы должны вернуться к рассмотренному в главе 1 вопросу о том, почему бачок у вас в туалете не переполняется водой при его повторном наполнении. Повторю еще раз: когда бачок наполняется водой, то специальный датчик — поплавок — уменьшает количество поступающей в него воды. Инженеры называют это подавлением на основе отрицательной обратной связи, или ретроингибированием: увеличение количества воды, накапливающейся в бачке, уменьшает вероятность дальнейшего поступления воды.

Большинство гормональных систем, включая ось КРГ/АКТГ/глюкокорти- коиды, функционируют по принципу подавления на основе отрицательной обратной связи. Мозг запускает выработку глюкокортикоидов опосредованно, через выработку КРГ и секрецию в гипофизе АКТГ. Мозг должен знать, продолжать ли выработку КРГ. Он узнает это, ощущая уровень глюкокортикоидов в крови (измеряя уровень гормона в крови, проходящей через мозг), и смотрит, соответствует ли этот уровень заданной величине, или же он выше или ниже ее. Если уровень ниже, мозг продолжает вырабатывать КРГ — так же как в ситуации с бачком, когда в него налилось еще недостаточно воды. Как только уровень глюкокортикоидов достигает заданной величины или превышает ее, поступает сигнал отрицательной обратной связи — и мозг прекращает выработку КРГ. Значение заданной величины может меняться. Количество глюкокортикоидов в крови должно быть разным в ситуации покоя и в стрессовой ситуации. (Это подразумевает, что количество глюкокортикоидов в крови, необходимое для прекращения выработки КРГ мозгом, должно варьироваться в зависимости от возникающих ситуаций.)

Так обычно работает эта система, и это можно увидеть в ходе эксперимента, когда человеку вводят большую дозу синтетического глюкокортикоида (дек- саметазон). Мозг чувствует внезапное увеличение уровня гормона и говорит: «Боже, не знаю, что происходит с этими идиотами в надпочечниках, но они только что выдали слишком много глюкокортикоидов». Дексаметазон подает сигнал отрицательной обратной связи, и скоро человек перестает вырабатывать КРГ, АКТГ и свои собственные глюкокортикоиды. Этого человека можно было бы охарактеризовать как «чувствительного к дексаметазону». Если же сигнал отрицательной обратной связи работает не очень хорошо, этот человек «резистентен к дексаметазону» и он продолжает вырабатывать различные гормоны, несмотря на сильный сигнал глюкокортикоидов в крови. Именно это происходит у старых людей, старых обезьян и старых крыс. Сигнал обратной связи, благодаря которому происходит регулирование уровня глюкокортикоидов, работает уже не так хорошо.

Это может объяснить, почему очень старые организмы вырабатывают чрезмерное количество глюкокортикоидов (в отсутствие стресса и в период восстановления после окончания воздействия стрессора). Почему происходит отказ системы регуляции с помощью обратной связи? Есть достаточное количество доказательств того, что это происходит из-за дегенерации одной части мозга в процессе старения. Не весь мозг выполняет роль «датчика глюкокортикоидов»; эту функцию выполняют несколько областей мозга с большим количеством рецепторов для глюкокортикоидов и средств, позволяющих дать понять гипоталамусу, нужно ли ему вырабатывать КРГ. В главе 10 я описал выдающуюся роль гиппокампа в обучении и запоминании. Как выясняется, он также является одним из тех важных участков мозга, которые получают сигнал отрицательной обратной связи для контроля за выработкой глюкокортикоидов. Также выясняется, что в процессе старения может иметь место дисфункция нейронов гиппокампа, в результате чего — в числе прочих негативных последствий — вырабатывается избыточное количество глюкокортикоидов. Это может объяснять, почему у пожилых людей в состоянии покоя бывает повышен уровень этого гормона, почему его выработка не прекращается по окончании стресса или почему они могут быть резистентны к дексаметазону. Все выглядит так, словно один из тормозов организма сломался и выработка гормонов почти бесконтрольно продолжается.

Поэтому из-за проблемы с регулированием обратной связи в поврежденном гиппокампе у пожилых людей возникает повышенный уровень глюкокортикоидов. Почему же в стареющем гиппокампе выходят из строя нейроны? Как уже говорилось в главе 10, под воздействием глюкокортикоидов.

Если вы читали внимательно, то, наверное, заметили нечто коварное в этих результатах. Когда гиппокамп поврежден, крыса вырабатывает больше глюкокортикоидов. А это должно нанести еще больший вред гиппокампу. Что, в свою очередь, должно вызвать еще более интенсивную выработку глюкокортикоидов... Происходит взаимное усугубление и образуется порочный круг дегенерации, который имеет место у многих стареющих крыс. А его потенциальные патологические последствия подробно обсуждались почти на каждой странице этой книги.

Наблюдается ли этот порочный круг дегенерации у людей? Как уже говорилось, уровень глюкокортикоидов сильно повышается у очень пожилых людей. В главе 10 в общих чертах описаны главные доказательства того, что эти гормоны способны оказывать негативное воздействие на гиппокамп человека. Гиппокамп человека и приматов является регулятором отрицательной обратной связи для выработки глюкокортикоидов, поэтому повреждение гиппокампа связано с избытком глюкокортикоидов, так же как у грызунов. Таким образом, уже описанный порочный круг дегенерации существует и у человека, и если человек в прошлом подвергался тяжелым стрессам или принимал синтетические глюкокортикоиды при лечении каких-либо заболеваний, то вероятность прогрессирования некоторых аспектов этого порочного круга увеличивается (рис. 47).

Значит ли это, что все потеряно и что этот вид дисфункции — неотъемлемая часть старения? Конечно, нет. Двумя параграфами выше я неслучайно написал, что этот порочный круг возникает у «многих» крыс, а не у «всех». Некоторым крысам удается благополучно стареть в том смысле, что у них этого порочного круга не возникает, так же как и у многих людей — их счастливые истории описаны в последней главе этой книги.

Таким образом, еще не совсем ясно, актуальна ли ситуация с «глюкокор- тикоидной нейротоксичностью» для процесса старения мозга человека. К сожалению, в течение ближайших лет мы вряд ли получим ответ на этот вопрос, поскольку этот предмет трудно изучать применительно к людям. Однако основываясь на наших знаниях об этом процессе у крыс и обезьян, можно сделать вывод, что токсичность глюкокортикоидов является поразительным примером того, как стресс может ускорить старение.


Если выяснится, что это относится также и к нам, это будет тем аспектом нашего старения, который таит в себе особую угрозу. Если мы пострадали в катастрофе, если теряем зрение или слух, если мы так ослаблены сердечной болезнью, что прикованы к постели, для нас становится недоступным многое из того, что наполняет жизнь смыслом. Но когда поврежден мозг, когда исчезает способность вызывать старые воспоминания или создавать новые, нас охватывает страх утратить разум и свою уникальную личность— именно этот вариант старения пугает нас больше всего.

Думаю, к настоящему времени, осилив 12 глав книги, даже самый терпеливый читатель должен устать от подробного описания разнообразных расстройств, которые может повлечь за собой стресс. Пора перейти ко второй половине книги, в которой рассматриваются управление стрессом, совладание с ним и индивидуальные различия в реакциях на стресс. Пора начать получать хорошие новости.

13. Почему психологический стресс вызывает стрессовую реакцию?

Некоторые рождаются биологами. Определить их можно еще в детстве — это они, с удобством расположившись за игрушечным микроскопом, на обеденном столе препарируют какое-нибудь мертвое животное; и это их за одержимость дразнят в школе гекконами[86]. Но в биологию приходят разные люди и из других областей — химии, психологии, физики, математики.

Через несколько десятилетий после возникновения науки о физиологии стресса ее наводнили люди, получившие сугубо техническое образование. Как и физиологи, они считали, что организм работает в соответствии со своей беспощадной логикой, но, будучи биоинженерами, как правило, видели в организме нечто похожее на принципиальную схему, например, радиоприемника: соотношение данных на входе-выходе, импеданс, контур обратной связи, сервомеханизм. Меня от таких слов в дрожь бросает — я и пишу-то их, едва понимая; но биоинженеры совершили чудо, вдохнув жизнь в науку о стрессе.

Предположим, вам интересно, как мозг узнает, когда остановить секрецию глюкокортикоидов — когда «хорошего понемножку». У всех есть смутное представление, что мозг так или иначе должен уметь измерить уровень глюкокортикоидов в крови, сравнить его с неким желательным уровнем и решить, продолжать ли секрецию КРГ или перекрыть кран (если опять обратиться к «сантехническому» сравнению). Тут пришли биоинженеры и продемонстрировали, что этот процесс куда более интересен и сложен, чем можно вообразить. Существует «несколько способов обратной связи»; время от времени мозг измеряет уровень глюкокортикоидов в крови, а иногда и скорость, с которой этот уровень меняется. Биоинженеры решили и еще один важный вопрос: идет ли процесс стрессовой реакции по линейному закону, или по закону «все или ничего»? Во время стресса вырабатываются адреналин, глюкокортикоиды, пролактин и другие вещества; но вырабатываются ли они в одной и той же степени независимо от интенсивности раздражителя (по закону «все или ничего»)? Система оказалась очень чувствительна к его силе, демонстрируя линейную зависимость между, например, степенью снижения кровяного давления и секреции адреналина, между уровнем гипогликемии (снижение сахара в крови) и секрецией глюкагона. Организм способен не т