Пуанкаре — страница 73 из 86

о публиковал свои исследования. Еще более резкие отзывы можно найти в письмах других представителей германской науки. Минковский писал Гильберту: «Я не мог заставить себя издавать свои труды в том виде, в каком издает их Пуанкаре». А Клейн в письме тому же адресату замечает: «Что касается публикаций Пуанкаре, то они всегда производили на меня впечатление, что их автор имеет намерение что-то опубликовать, даже если в этом ничего или почти ничего нового не содержится. Согласны ли Вы с этим? Не слышали ли Вы в Париже, что у некоторых такое же мнение?»[61] В подобных высказываниях явно выражено полное неприятие стиля и характера изложения работ Пуанкаре. Его живая, подвижная манера считалась почему-то не совместимой с содержательностью и основательностью, которые являлись для немецких ученых синонимом научности.

Это был далеко не первый случай, в котором проявился совершенно различный подход немецких и французских математиков к вопросу публикации результатов исследований. Достаточно вспомнить двух наиболее выдающихся и наиболее типичных представителей этих математических школ — Гаусса и Коши. Прежде чем посылать свои работы в печать, гениальный геттингенский ученый Карл Гаусс тщательно обрабатывал все изложение, крайне заботясь о краткости, изяществе методов и языка, устраняя всякие следы предварительных, черновых трудов. Он не только не торопился с опубликованием своих результатов, но оставлял их вылеживаться годами и даже десятками лет, временами возвращаясь к ним вновь, чтобы довести их до желаемого совершенства. Способ наименьших квадратов, например, он опубликовал через 15 лет после его разработки. Открыв эллиптические функции еще за 34 года до Абеля и Якоби, он так и не удосужился опубликовать эти исследования, и они появились только в «Наследии» великого математика, через 60 лет после его смерти. Многие результаты, достигнутые Бесселем, Гамильтоном, Абелем, Якоби и Коши, были еще раньше получены Гауссом, но так и не попали в печать при его жизни.

В отличие от него Огюстен Коши писал такое множество работ, и превосходных и торопливых, что их не могли вместить ни издания Парижской академии, ни тогдашние математические журналы. Поэтому знаменитый французский математик основал свой собственный журнал, в котором помещал исключительно свои статьи. Всего им было издано более 700 работ по самым различным вопросам математики и физики. Гаусс весьма резко и едко выразил свое мнение по этому поводу: «Коши страдает математическим поносом». «Неизвестно, не говорил ли Коши в отместку, что Гаусс страдает математическим запором?» — замечает академик А. Н. Крылов, рассказав об этом конфликте стилей.

Лекция в Геттингене

Один немецкий математик завещал Королевскому научному обществу в Геттингене крупную сумму денег (100 тысяч марок) в качестве премии тому, кто представит доказательство «великой теоремы» Ферма. Поступающая от этого фонда ежегодная прибыль могла быть использована по усмотрению научного общества. Решили приглашать в Геттинген на эти средства выдающихся ученых для чтения лекций по актуальным научным проблемам. Первым, кому предложили выступить перед местной аудиторией, был Анри Пуанкаре. Инициатива исходила от Гильберта, председателя комитета по фонду.

Многим геттингенцам это приглашение пришлось не по нраву. Сказывалось давнее соперничество между двумя крупнейшими математическими школами Европы, сказывался тот осадок, который остался у немецких математиков после блестящих научных побед Пуанкаре. И наконец, опасались, что приезд французского ученого будет нежелательным напоминанием о том трагическом срыве в творчестве Ф. Клейна, который он пережил при своем соревновании с ним на поприще фуксовых функций. К тому же совсем недавно Геттинген постигло разочарование в связи с тем, что Венгерская академия наук присудила премию Бояи не Гильберту, а Пуанкаре. Но сам Гильберт был неумолим. Он был очень высокого мнения о выдающемся французском ученом и отзывался о нем не иначе как о «самом блестящем математике его поколения».

В то время Гильберт испытывал большую потребность в научных контактах. Он едва оправился от глубокой депрессии, вызванной умственным переутомлением, и только после длительного отдыха в горах смог вернуться к научной работе. Но смерть давнего друга Германа Минковского снова выбила его из колеи. Теперь Гильберт надеялся, что беседы с Пуанкаре помогут ему обрести активный творческий потенциал.

Геттинген, где царили Ф. Клейн и Д. Гильберт, был настоящей Меккой немецких математиков. Мощная и импозантная фигура Клейна внушала всем громадное уважение и благоговение; его называли не иначе как «великий Феликс» или «божественный Феликс». Старейший глава немецких математиков методично проводил в жизнь свой план превращения Геттингена в научный центр широкого профиля. В апреле 1909 года, во время пребывания здесь Пуанкаре, Клейну как раз исполнилось 60 лет, и Гильберт с женой устроили большой прием в его честь и в честь французского гостя.

Визит прославленного французского математика в Геттинген, несмотря на скрытое недоброжелательство многих здешних ученых, был ярким событием в размеренной жизни университетского городка. Об этой встрече вспоминали и многие годы спустя. Первые пять лекций Пуанкаре посвятил интегральным уравнениям, к которым он обратился еще во время исследований морских приливов и с которыми были связаны его теоретические работы по распространению волн телеграфии. В шестой лекции он перешел к проблемам новой механики, вытекающей из принципа относительности. При выборе тем своих выступлений Пуанкаре, по-видимому, исходил из интересов геттингенских ученых, желая говорить с ними о том, что их больше всего должно волновать. Ведь интегральные уравнения составляли предмет многолетних и весьма успешных исследований самого Гильберта, а вторая тема считалась в Геттингене основным достижением Г. Минковского, умершего в начале этого года после операции аппендицита. Но эффект был как раз обратным. И в самом подборе тем немецкие ученые усмотрели преднамеренный вызов со стороны французского математика.

Приступая к шестой, последней лекции, Пуанкаре сделал небольшое вступление: «Я должен извиниться, что принужден сегодня говорить по-французски. Хотя на предыдущих моих лекциях я объяснялся по-немецки, но объяснялся слишком плохо; говорить на чужом языке так же трудно, как хромому ходить: необходимы костыли; до сих пор моими костылями были математические формулы, и вы не можете себе представить, какая это поддержка для оратора, который встречает затруднения в выражении своих мыслей. Сегодня я не хочу пользоваться формулами, я остаюсь без костылей и вот почему должен говорить по-французски». И он говорит о новых взглядах на пространство и время, обходясь без помощи математических формул. Но этот путь лишил его возможности затронуть в своем выступлении разработанный им математический аппарат новой теории и не позволил ему хоть в какой-то степени повлиять на мнение геттингенских слушателей, конечно же, считавших Минковского первым и единственным создателем четырехмерной геометрии. Присутствовавший на этой лекции будущий известный физик-теоретик Макс Борн с удивлением вспоминал, что в своем популярном изложении основ теории относительности Пуанкаре вообще не упомянул ни Эйнштейна, ни Минковского. «…Странная вещь, — писал он впоследствии, — эта лекция оставляет у читателя впечатление, как если бы в ней обсуждались работы Лоренца».

Геттингенская лекция Пуанкаре содержала лишь элементарное изложение особенностей новой механики и ее связи с принципом относительности. Но в упрощенную форму изложения автор облек более глубокое понимание всей проблемы, чем это было в широко распространенном тогда ее толковании. «Принцип относительности в новой механике не допускает никаких ограничений, — категорически заявляет докладчик. — Он имеет, если так можно выразиться, абсолютное значение». Из дальнейших его слов следует, что под абсолютным значением этого принципа он понимает его всеобщность. В то время, в 1909 году, всеобщность принципа относительности еще не была осознана во всей ее полноте. Между тем идея эта составляла основу революционного преобразования многих физических понятий и представлений. Исходную постановку такого взгляда на принцип относительности Пуанкаре находит в работе Лоренца 1904 года, но ни одним словом не обмолвился он о своем вкладе в разработку этого вопроса.

Пуанкаре обсуждает некоторые направления, в которых, по его мнению, будет расширяться область действия принципа относительности. Он говорит о необходимости связать новую механику с современными воззрениями на вещество, с представлениями об атоме, рассматривает также ее отношение к астрономии. Новая теория тяготения, отмечает Пуанкаре, должна учесть несостоятельность прежнего представления о постоянстве массы тел; она должна «считаться и с тем, что притяжение не мгновенно». Он предвидит, что «новый закон притяжения двух тел, зависящий от их скоростей», может привести к незначительному отличию от закона Ньютона и что «наибольшая разница должна обнаружиться в теории движения Меркурия, самой быстрой из всех планет». Пуанкаре указывает на не объясненную до сих пор аномалию в движении этой планеты. По закону Ньютона оси эллиптических траекторий планет должны сохранять неизменными свои направления в пространстве. Наблюдая за Меркурием, астрономы обнаружили поворот оси эллипса на 38 угловых секунд в столетие. «Новая механика несколько исправляет ошибку в теории движения Меркурия, доведя ее до 32", но не дает полного соответствия между наблюдением и вычислением», — подводит итоги докладчик. И снова Пуанкаре даже не ссылается на свою работу 1906 года, в которой был изложен не только первый, но и единственный тогда вариант релятивистской теории тяготения.

Несовпадение теоретических результатов с астрономическими наблюдениями Пуанкаре расценивает как предостерегающий сигнал о том, что не следует торопиться с окончательным признанием справедливости новой механики. Еще более осторожен он в статье 1908 года, которая и легла в основу его геттингенской лекции. Во введении к этой своей публикации на страницах научно-популярного журнала «Общее обозрение чистой и прикладной физики» автор пишет: «Быть может, нам не следовало так поспешно считать эти новые факты окончательно установленными истинами и ниспрове