Путешествие Колдуна II. Экспедиция, которая раскрыла секреты микробиома океана — страница 9 из 44

Вместо этого Крейг предлагал установить последовательность и собрать воедино тысячи отдельных организмов и видов, содержащихся в разнородных образцах из Саргассова моря, - идея, которую многие ученые считали провальной. Это означало, что нужно было заново изобрести и пересмотреть каждый этап процесса секвенирования, начиная с того, как лаборанты вскрывали и выделяли ДНК из множества образцов отдельных организмов одновременно. Проблема заключалась в том, как создать библиотеки секвенирования, в которые можно было бы одновременно поместить большое количество различных микробов, сохранив при этом случайность последовательностей. "В то время, - говорит Крейг, преуменьшая, - это была нелегкая задача".

Чтобы подготовить необработанные образцы к секвенированию, Хоффман обратился к Синди Пфаннкоч, лаборантке из JCVI, которая ранее работала над подготовкой ДНК к секвенированию в рамках проекта "Геном человека", а теперь была направлена во временную лабораторию в Роквилле. "Именно там мы начали работать над Саргассовым морем, - вспоминал Пфаннкоч, - и там мы разработали, как будем фильтровать. У нас было две или три лаборатории, я думаю, они напоминали NIH в пятидесятые годы. Такой декор. Черные скамейки из формики, мрачные зеленые стены, сбоку пара маленьких скамеечек, похожих на столы".

Получив образование почвенного микробиолога, Хоффман адаптировал методы выделения ДНК, которые он освоил в пустынях Аризоны во время защиты докторской диссертации. "Это были довольно стандартные методы, - говорит он, - хотя я никогда не использовал их для микробов из океана". Хоффман, Пфаннкох и небольшая команда из института начали с того, что взяли замороженные фильтры, содержащие микробы, привезенные с Бермудских островов, и разрезали их на крошечные кусочки. Затем они использовали специальные ферменты, предназначенные для вскрытия клеток и извлечения ДНК. "Оказалось, что океанские микробы вскрываются довольно легко, - говорит Джефф, - по сравнению с микробами пустынной почвы, у которых более толстые мембраны". Полный процесс извлечения занял около трех дней.

"Отчасти мы полагались на опыт Джеффа", - вспоминает Крейг. "Нужно было уметь вскрыть все клетки. Поэтому они попробовали несколько различных экспериментальных протоколов, чтобы извлечь всю ДНК.

У микробиологов команды был опыт вскрытия клеток, а у Джеффа - опыт работы с микробами пустынной почвы. Некоторые клетки из почвы очень трудно вскрыть, потому что они образуют маленькие микрокапсулы. Каждый член команды предлагал различные протоколы, которые позволяли вскрыть все клетки и получить наибольшее количество ДНК".

Следующие шаги заключались в создании нескольких копий ДНК в образцах, а затем в буквальном смысле разбиении ДНК на фрагменты размером от пятисот до двух тысяч пар оснований с помощью аппарата, называемого распылителем. Затем фрагменты пропускались через один из секвенаторов Applied Biosystems, который отмечал и идентифицировал каждую генетическую букву.

После завершения секвенирования и компьютерной обработки файлов команда вычислительных биологов из института взяла цифровые последовательности и принялась за работу, пытаясь собрать эти фрагменты кода в естественные хромосомы организма. Для этого команда искала совпадения в коде разных фрагментов. Подробное описание того, как это делается, представлено Национальным центром биотехнологической информации в его справочнике NCBI.1 Но для простоты предположим, что после того, как распылитель произвел взрыв, в оставленных им фрагментах были следующие три:

Фрагмент 1: -----TCATGCTTGAC-----TACAGC

Фрагмент 2: TGCATCATGC-----GCTATACAGC

Фрагмент 3: -----TTGACGCGGCTATAC---.

Компьютер быстро определяет перекрывающиеся части этих фрагментов и способен собрать всю последовательность, которую они покрывают:

TGCATCATGCTTGACGCGGCTATACAGC

Этот процесс может работать, когда несколько копий генома данного организма собраны и раздроблены, чтобы получить различные фрагменты. Чем больше копий, тем больше шансов, что будут найдены участки с идентичными последовательностями ДНК и что случайные фрагменты могут быть скомпилированы компьютерами в контиги.

Еще проще представить себе, что кто-то распечатал несколько копий, скажем, статьи из New York Times и нарезал их по-разному, получив множество изо-лированных строк символов. Эти фрагменты не имеют смысла, пока вы не начнете находить в разных вырезках последовательности, которые точно совпадают. Возьмем, к примеру, первое предложение статьи о проекте "Геном человека", написанной в 2001 году Николасом Уэйдом.2 Вот несколько возможных фрагментов из нее:

/ е давно устоявшиеся представления о биологии человека. / Публикация первой интерпретации

/ На этой неделе было вынесено решение, опровергающее некоторые давние убеждения относительно интерпретации последовательности генома человека.

И вот эти фрагменты сшиты вместе, чтобы показать исходное предложение:

Опубликованная на этой неделе первая интерпретация последовательности генома человека переворачивает некоторые давно устоявшиеся представления о биологии человека.

Дробное секвенирование ЦЕЛОГО ГЕНОМА было впервые разработано в середине 1990-х годов, когда Крейг и Гамильтон "Хэм" Смит - нобелевский лауреат, близкий друг Крейга и его соратник по TIGR, Celera и JCVI - изобрели процесс секвенирования Haemophilus influenzae.

Другие использовали термин "дробовое секвенирование" для описания того, что они делали, что сбивает с толку", - говорит Крейг. "Например, Фред Сэнгер в 1977 году использовал этот термин для обозначения методов, с помощью которых он впервые секвенировал вирус Phi-X174".3 Так же поступила группа ученых из Калифорнийского университета в Дэвисе в 1981 году, которые использовали тот же подход, что и Сэнгер, когда секвенировали вирус цветной капусты Mo-saic. Но оба вируса были подготовлены к секвенированию не с помощью распылителей, разбивающих ДНК на маленькие случайные фрагменты, а с помощью более традиционного метода, использующего ферменты рестрикции. Они работают как химические ножницы, разрезая ДНК на части в точных местах генетической последовательности. Затем эти фрагменты секвенируются по одному и вручную соединяются в компьютере. Фактически именно Хэм Смит вместе с двумя другими учеными стал пионером в использовании ферментов рестрикции - это открытие принесло им Нобелевскую премию по медицине 1978 года.

"Вместо ферментов рестрикции, - говорит Крейг, - мы случайным образом разрезали ДНК на мелкие фрагменты - двадцать пять тысяч фрагментов в одной пробирке для первого генома. Затем все эти фрагменты были секвенированы, и двадцать пять тысяч фрагментов были точно собраны заново". Крейг писал об этом процессе секвенирования Haemophilus в книге "Жизнь со скоростью света": "В результате 1,8 миллиона пар оснований генома [Haemophilus] были воссозданы в компьютере в правильном порядке. Следующим шагом стала интерпретация генома и определение всех входящих в него генов".

В 1995 году команда изложила результаты се-квенирования Haemophilus и их интерпретацию в статье в журнале Science под названием "Полногеномное случайное секвенирование и сборка Haemophilus influenzae Rd": "Тот факт, что мы смогли собрать Haemophilus с помощью алгоритма так быстро и так точно, бросил вызов всем. "Они использовали тот же аргумент, что и при секвенировании генома человека, - что на секвенирование такого количества ДНК старыми методами уйдут десятилетия. Но потом мы добились успеха с Haemoph-ilus, доказав, что математически это можно сделать гораздо быстрее. Это также доказало, что с помощью этого метода можно секвенировать геном человека. Это было бы невозможно, если бы мы не сделали сначала Haemophilus".

Когда геном Haemophilus был опубликован, он добавил: "Фред Сэнгер даже прислал мне милую записку от руки... в которой сказал, что всегда верил, что мой подход сработает, но у него не было возможности проверить его, потому что его коллеги хотели получить свой собственный кусок ДНК".

После секвенирования Haemophilus influenzae и Mycoplasma genitalium Крейг привлек к себе большое внимание в СМИ и научных кругах. Хэма и Крейга пригласили прочитать президентскую лекцию в Американском обществе микробиологии на его ежегодном собрании в Вашингтоне. "Хэм представил меня, и я прочитал лекцию", - рассказывает Крейг. "В конце произошло редкое для науки событие: двадцать тысяч ученых поднялись на ноги и аплодировали нам стоя за секвенирование первого в истории организма".

"Этот успех позволил нам получить крупное финансирование и продолжить эти ранние эксперименты и проверки секвенирования дробовика с использованием бактерий", - говорит он. Одним из главных спонсоров, сторонников и болельщиков почти всех проектов Крейга после Haemophilus был Ари Патринос, который в 1995 году был назначен ответственным за биологические и экологические исследования в Управлении науки Министерства энергетики США (DOE). Позже Патринос вспоминал, как он упустил шанс профинансировать Haemophilus, потому что о том, что рецензенты из министерства энергетики наплевали на предложенный проект. "Я хотел профинансировать секвенирование первого микробного генома, - говорит он, - но все отзывы о проекте были отрицательными. Все эти эксперты считали, что Крейг не справится. В конце концов я отменил их решение, что мне было разрешено, но мне пришлось пройти через всю бумажную волокиту, чтобы добиться отмены решения, а тем временем Крейг раздобыл немного частных денег и смог профинансировать первую работу без DOE, потому что мне потребовалось слишком много времени, чтобы получить разрешение". Однако после этого его бюро "финансировало практически все". "И это была одна из лучших вещей, которые я сделал", - сказал Па-тринос, потому что работа Крейга "была новаторской и очень сильно изменила мировоззрение научного сообщества в этой области".

Крейг вспомнил об одном откровенном открытии, сделанном в первые дни поддержки МЭ. "После Haemophilus и M. genitalium Министерство энергетики выделило нам двадцать или тридцать ге-номов, - говорит Крейг, - и создало консультативный комитет, чтобы помочь нам сделать выбор: Какие наиболее важные виды микроорганизмов на планете мы должны изучить в первую очередь?" В комитет вошли известный микробиолог Рита Колвелл, которая впоследствии стала директором Национального научного фонда, и Карл Виз, микробиолог, разработавший процесс штрихкодирования видов с помощью 16S рРНК и открывший существование типа клеток архея.