Путешествие от частицы до Вселенной. Математика газовой динамики — страница 4 из 25

Используя закон действия и противодействия, можно доказать, что импульс системы частиц должен оставаться постоянным. Возьмем предыдущий пример с прыжком: с одной стороны, человек толкает Землю вниз, в то время как Земля толкает человека вверх. Сила, примененная к человеку, вызывает изменение его скорости, согласно второму закону Ньютона, в котором говорится, что сила пропорциональна ускорению. Точно так же сила, примененная к Земле, влечет изменение ее скорости. Естественно, изменение скорости человека намного больше: масса человека по сравнению с массой Земли очень незначительна. Хотя изменение скорости Земли незаметно ввиду огромной массы планеты, однако изменение ее импульса равно изменению импульса человека, но в противоположном направлении. Итак, оба изменения импульса взаимно сокращаются, и общий импульс остается постоянным.

* * *

УИЛЬЯМ РОУЭН ГАМИЛЬТОН (1805–1865)

Гамильтон был ирландским физиком и математиком. Его главный вклад в физику состоял в том, что он вывел уравнения движения для тела в классической механике в их современном виде. Гамильтон изобрел кватернионы — систему представления комплексных чисел в четырех измерениях. Кватернионы подходят для описания любого типа вращений и широко использовались в физике, пока не были заменены векторным исчислением.

Гамильтон с детства проявил удивительные лингвистические способности, и уже к подростковому возрасту говорил на 12 языках. Однако потом эта его страсть уступила место все возрастающему интересу к математике, вызванному чтением великих трудов, таких как «Начала» Ньютона и «Небесная механика» Лапласа. Гамильтону удалось не только найти новые формулировки для законов Ньютона, но и построить параллели между механикой и оптикой, а затем перейти к разработке серии уравнений, применимых к обеим этим дисциплинам. Работы ученого использовал австрийский физик Эрвин Шрёдингер (1887–1961) для получения своего знаменитого уравнения, определяющего квантовую механику и использующего идею корпускулярно-волнового дуализма (вспомним, что механика работает с частицами, а оптика — с волнами).



* * *

Газ — это система частиц, на которую не воздействуют внешние силы. Это означает, что количество движения его частиц должно оставаться неизменным. Что удивительно, так это возможность сделать подобный прогноз, абсолютно ничего не зная о свойствах молекул, из которых состоит газ. Это делает возможными определенные вычисления, связанные с законами сохранения импульса или энергии. Эти законы являются фундаментальными для прогнозирования поведения какой-либо сложной системы.

Гамильтон решил «заново выразить» уравнения Лагранжа в терминах положений и импульсов вместо положений и скоростей. Таким образом он намеревался упростить математические методы, необходимые для определения траектории изучаемой частицы. Поскольку положения частиц выражались в обобщенных координатах, Гамильтон вынужден был дать импульсу другое определение, адаптированное для этих координат. Он назвал эти новые импульсы обобщенными импульсами и определил их таким образом, чтобы они совпадали с импульсами Ньютона в случае, когда обобщенные координаты совпадают с координатами в прямоугольной системе.

Гамильтон пытался уравнять импульсы и положения, предположив, что импульс — просто координата. Сделав это, он столкнулся с тем, что количество уравнений, требовавших решения, увеличилось, но сами уравнения при этом стали проще.

Поясним, как скорости заменяются импульсами. Возьмем частицу, брошенную в воздух на определенной скорости. Ее кинетическая энергия определяется следующим образом:

T = m·v2/2

Теперь заменим скорости импульсами. Мы знаем, что импульс — это произведение массы на скорость:

p = m·v.

Сократив скорость, получаем:

v = p/m

Теперь, если в формуле кинетической энергии заменить скорость (v) на полученный результат, имеем:


Это выражение включает не скорость, а импульс частицы. Выражение лагранжиана теперь включает в себя только положение и импульс, но в нем при этом удвоилось число неизвестных: теперь нужно найти как положение, так и импульс частицы в каждый момент времени. Но несмотря на такое усложнение, это все же проще, чем решать уравнения Эйлера — Лагранжа.


Уравнения Гамильтона

Следующим шагом для Гамильтона был поиск системы уравнений, которые позволили бы описать изменение во времени импульса и положения частицы, если даны их кинетическая и потенциальная энергии. Для решения задачи Гамильтон пошел дальше уравнений Эйлера — Лагранжа и нашел собственную формулировку классической механики.

Ключевым шагом было введение новой величины, названной в честь ученого гамильтонианом. Гамильтониан частицы совпадает с суммарной энергией, это сумма кинетической и потенциальной энергий. То есть:

H = T + V.

Здесь нужно сделать важное замечание: хотя представленное выше уравнение обычно верно, в некоторых случаях необходимо получать гамильтониан другими способами. Например, это происходит при изменении энергии или когда изучаемая система ускоряется. Однако в подавляющем большинстве физических систем суммарная энергия остается неизменной, поэтому обычно используется именно это уравнение.

Необходимо помнить, что кинетическая и потенциальная энергия зависит от импульсов и положений, которые, в свою очередь, являются временными функциями.

Найдем, как зависят положение и импульс от времени. Другими словами, мы хотим узнать, куда и с какой скоростью движется изучаемое тело. Используя уравнения Эйлера — Лагранжа, Гамильтону удалось изменить их так, чтобы найти новые равенства, зависящие только от гамильтониана. Открытые ученым уравнения могут быть выражены следующим образом:

— изменение положения во времени равно изменению гамильтониана за единицу импульса;

— изменение импульса во времени противоположно изменению гамильтониана в пространстве.

Ниже приведено их математическое выражение, в котором символы d и , несмотря на то что их значения немного различаются (не станем углубляться в эти различия), могут читаться как «изменение»:


Говоря об уравнениях Гамильтона, следует отметить некоторые моменты. Во-первых, как и можно было ожидать, мы видим два уравнения вместо одного, поскольку теперь мы должны вычислить изменение как положения, так и импульса.

Во-вторых, уравнения не зависят от скорости, а только от импульса, положения и гамильтониана, как этого и хотел Гамильтон. Наконец, оба уравнения симметричны, кроме знака. Это совпадение кажется почти волшебным: как может быть, что положение и импульс, абсолютно разные величины, ведут себя так похоже? Это совпадение не давало покоя нескольким поколениям физиков, особенно после того, как было открыто, что подобное отношение — фундаментальная часть квантовой механики. В теории струн дуализм импульса и положения привел к еще более важному утверждению: можно математически описать вселенные, где импульс ведет себя так, как будто является положением, в то время как положение играет роль импульса, что было названо Т-дуализмом.


Применение уравнений Гамильтона

Применение уравнений Гамильтона открывает широкие возможности, благодаря чему сегодня эти уравнения используются не только в классической механике, для которой они были разработаны. Если законы Ньютона в релятивистской системе, где скорость частиц приближается к скорости света, перестают действовать, то уравнения Гамильтона продолжают давать верные результаты: надо лишь заново определить значения кинетической и потенциальной энергии. Уравнения Гамильтона можно считать основой супертеории в том смысле, что они охватывают частную физическую теорию и применяются для тел в электрических или гравитационных полях. Эти уравнения могут быть применены к любой еще не открытой силе при одном условии: необходимо вычислить связанную с ней потенциальную энергию.

Квантовая механика — это физическая теория, которая рассматривает процессы в микромире. В отличие от релятивистской механики, здесь уравнения Гамильтона перестают работать, поскольку все изменения положений и импульсов в микромире в некотором роде случайны. И все же гамильтониан в этой теории становится еще более важным, поскольку определяет изменение любой квантовой системы во времени. Особое отношение между положением и импульсом является ключевым для такого понятия, как принцип неопределенности, который гласит, что невозможно одновременно точно измерить и импульс, и положение частицы.

Математический аппарат, предложенный Гамильтоном почти 200 лет назад, работает и сегодня. Потенциал уравнений Гамильтона очень высок, и они используются в дисциплинах, мало связанных с физикой. Так, Давид Касс (1937–2008), профессор экономики Пенсильванского университета, использовал эти уравнения для создания модели экономического роста. Он сопоставил значения импульсов, положений и некоторых экономических переменных, таких как экономический поток или цены, чтобы с помощью гамильтониана создать модель валового внутреннего продукта государства. Конечной целью Касса была возможность прогнозировать и даже направлять экономическое развитие. Ученые продолжают адаптировать уравнения Гамильтона для многих других отраслей.

До сих пор мы приводили только примеры применения уравнений Гамильтона к одной частице, но благодаря гибкой формулировке этот инструмент позволяет работать с неограниченным их числом. Анализ систем из нескольких частиц — это первый шаг к пониманию газовой динамики.

Глава 2Размышляя об N-ном количестве измерений

Наиболее простые проблемы физики связаны с рассмотрением объекта, движущегося под воздействием некой силы. Однако наблюдать такую ситуацию в реальном мире мы не можем: Вселенная — это совокупность огромного количества частиц, которые взаимодействуют друг с другом различным образом, и газ — идеальный пример такого взаимодействия. Вообразить движение всех этих частиц относительно просто, но как выразить это математически? Для ответа на вопрос физикам и математикам пришлось дать новое определение понятию пространство и превратить его в математический объект. Ученые разработали модели различных типов пространств, которые очень отличаются от нашего: в этих моделях кратчайшая линия, соединяющая две точки, не является прямой или в них существует больше направлений, чем вверх и вниз, направо и налево, вперед и назад. Применение таких моделей вышло далеко за границы изучения газов: они подходят как для описания пространства-времени, так и для анализа работы биржи.