Указывал он и на то, что глубокое изучение физических и химических свойств урана — тогда последнего элемента — приведет к новым открытиям в физике и химии.
С 1875 года начали отыскиваться новые элементы, для которых Менделеев оставил пустые клетки в своей системе. В 1886 году был открыт уже третий из таких элементов — германий. Однако в том же году английский ученый Уильям Крукс говорил: «Мы смотрим на число элементов, на их отличительные свойства и спрашиваем себя: случайны или чем-нибудь обусловлены эти обстоятельства? Другими словами, могло ли быть только 7, или 700, или 7000 абсолютно различных элементов?»
Почему же возникали такие вопросы?
Прежде всего из-за неполноты тогдашних знаний о самих элементах. Периодический закон был открыт, а причина периодичности оставалась непонятной, так как в XIX веке почти ничего не знали о строении атома. Представление о заряде ядра появилось значительно позже, в начале второго десятилетия XX века. Раньше порядковый номер элемента был просто регистрационным номером в таблице элементов.
Поэтому не нужно удивляться тому, что Д. И. Менделеев мог делать уверенные предсказания только о недостающих внутри системы элементах на основании данных о всех соседях «невидимки». Но выйти за рамки системы он не мог.
Для иллюстрации сказанного приведем такой пример. Возьмем первые два периода системы элементов.
Если бы мы не знали, что порядковые номера химических элементов есть не что иное, как заряд ядра, который увеличивается ровно на единицу при переходе от одного элемента к другому, то не могли бы совершенно уверенно сказать, находятся ли еще какие-нибудь элементы между водородом и гелием и, точно так же, есть ли элементы выше водорода. Можно предполагать, например, существование в первом периоде элемента с атомным весом 3, аналогом которого являются фтор и другие галогены. Действительно, подобные предположения высказывались.
Как же в те годы решался вопрос о начале системы?
Опыт изучения легких элементов свидетельствовал, что все они широко распространены в природе. Поэтому высказывалось мнение о невозможности найти еще какие-либо новые, более легкие элементы. Однако начиная с 1894 года была открыта группа инертных газов, в том числе гелий, имеющий малый атомный вес (4). Вновь открытые элементы оказались химически недеятельными, а потому и малораспространенными. Таких элементов химики раньше не знали.
В течение десятков лет многие ученые высказывались в пользу идеи единства простых тел химии, считая все химические элементы построенными из одного, более легкого элемента, чем все до сих пор известные. Это было возрождением нашумевшей когда-то гипотезы Проута, полагавшего, что химические элементы построены из атомов водорода. Однако гипотеза Проута была опровергнута экспериментальными определениями величин атомных весов: у большинства элементов они вовсе не являются кратными атомному весу водорода.
Это было в начале XIX века, а в конце его стали говорить то о гипотетическом «протиле», то об элементе «коронии», спектр которого якобы наблюдался в солнечной короне. Поиски более легких элементов на Солнце объясняются, конечно, огромной температурой нашего светила, создающей условия для появления этих простых, как думали, элементов, из которых затем складываются более сложные.
Выдающиеся открытия в науке — открытие электрона, рентгеновых лучей, радиоактивности, взаимопревращаемости элементов — раскрыли природу химических элементов и показали, что атом состоит из ядра, заряженного положительно, и электронов, вращающихся вокруг ядра. Тогда-то и было утверждено положение о заряде ядра, которому равен порядковый номер элемента в системе. Итак, водород остался первым, так как заряд его ядра равен 1. И все же история с нижним пределом оказалась не совсем завершенной. «Виновником» этого был отчасти Менделеев. В 1906 году он поместил в системе элементов наряду с нулевой группой нулевой период, желая тем самым подчеркнуть существование элементов в еще большей степени, чем инертные газы, лишенных химической активности. В нулевой период вошли два гипотетических (предполагаемых) элемента X и Y, ставших выше водорода и имевших атомные веса 10–6 для X и 0,4 для Y.
Надо сказать, что о существовании более легкого, чем водород, элемента Менделеев задумывался еще в 1871–1872 годах, понимая важность решения этого вопроса для объяснения причины периодичности и природы элементов.
Позднее на основе учения о строении атома было уточнено понятие о «химическом элементе» и первым из них признан водород. X и Y, как не соответствующие этому определению, изъяли из системы элементов.
Однако затишье наступило ненадолго. Когда были открыты протоны и нейтроны, составляющие ядра атомов, появились попытки включить нейтрон в систему элементов. Предлагалось считать его элементом с порядковым номером, равным нулю. В подкрепление выдвигаемой точки зрения ссылались на менделеевские элементы X и Y. Один из химиков даже советовал назвать нейтрон «менделеевием».
Включить электрон в систему элементов химики пробовали еще ранее.
Отдельные ученые пытались ввести представление о циклах или сдвоенных периодах. Известно, что в системе элементов периоды по 8, 18 и 32 элемента повторяются дважды. Исключением является единственный (первый), состоящий из двух элементов. С введением нулевого периода нарушенная его отсутствием стройность системы восстанавливалась. Такая система хорошо подчиняется формуле: Z = 2(n12 + n22), где n1 — номер нечетного, а n2 — четного ряда системы, a Z — число элементов в любом периоде.
Из каких же элементов состоит нулевой период? Ими оказываются электрон и нейтрон. Совершенно очевидно, что ни тот, ни другой не подходят под определение элемента. Ведь в нейтральном состоянии каждый из атомов какого-либо элемента имеет ядро и оболочку, состоящую из электронов. В периодической системе элементов как раз и выражается закономерное усложнение электронной оболочки с увеличением заряда ядра. При отсутствии этой совокупности (ядра и оболочки) мы переходим к качественно новому виду частиц материи. Действительно, ядра атомов и изотопов образуют свою систему, элементарные частицы — свою и т. д.
В стремлении включить в систему элементов нулевой период сказалось желание наглядно представить все ту же идею единства материи, взаимосвязь различных частиц материи. Ведь электрон, нейтрон, протон и гелий (их иногда называют «праэлементами») являются как бы составной частью всех элементов. В последнее время развитие этого вопроса привело к тому, что на страницах научных журналов стали появляться публикации «периодических систем элементов и антиэлементов». Под последними понимаются материальные образования, состоящие из позитронов (которые являются антиэлектронами: электрон — e–, позитрон — e+) и антиядер, составленных, в свою очередь, из антипротонов и антинейтронов, которые тоже теперь открыты.
Химики же в своей работе используют пока обычную «классическую» систему элементов, начинающуюся с водорода — первого химического элемента.
Было время — и тянулось оно, надо сказать, весьма долго, — когда таблицу элементов замыкал элемент уран. За ним начиналось Неизвестное. Беспокойная мысль ученых не могла ответить на вопрос, почему в природе не обнаружены элементы тяжелее урана. Может, они невообразимо редки, может, не существует вообще, — недаром же Менделеев завещал грядущим поколениям ученых особое внимание обратить на уран. «От последнего в списке элементов можно ожидать всяких сюрпризов», — говорил великий ученый. Это предвидение начало сбываться уже при его жизни. Ведь именно с ураном оказалось связанным открытие явления радиоактивности.
Элементы конца периодической системы неустойчивы — к такому выводу пришли ученые в начале XX века. Простая логика подсказывала, что трансурановые элементы обладали, по-видимому, невысокими периодами полураспада и потому не сохранились до нашего времени. Вот почему менделеевская система обрывается на уране. Но это было лишь качественное объяснение.
Чтобы дать отсутствию трансурановых элементов в природе более строгое научное объяснение, нам придется сделать некоторое отступление.
Все элементы конца таблицы Менделеева, начиная с полония, радиоактивны. Но лишь уран и торий сохранились и по сей день с той поры, как образовалась солнечная система. Существующие в природе их изотопы (торий-232, уран-235, уран-238) имеют периоды полураспада, превышающие возраст Земли, равный 5 миллиардам лет. Остальные же радиоактивные элементы — полоний, радий, актиний и другие — гораздо менее долговечны. Те их количества, которые мы сейчас обнаруживаем в земной коре, представляют собой продукты распада долго живущих изотопов урана и тория. Они являются вторичными элементами. Супруги Кюри выделили из иоахимстальской руды вторичные радий и полоний, Дебьерн открыл вторичный актиний.
Чему же обязаны уран и торий своей сравнительно огромной долговечностью? Казалось бы, чем дальше расположен элемент в периодической системе, тем он неустойчивее. А на деле периоды полураспада изотопов урана и тория превосходят периоды полураспада всех прочих изотопов радиоактивных элементов в миллионы и десятки миллионов раз.
Ответ дадут нам некоторые закономерности ядерной физики.
46 радиоизотопов входят в ряды радиоактивных превращений урана-238, урана-235 и тория-232; 34 из них являются альфа-активными.
Испускание ядер гелия — главный вид распада у тяжелых элементов, и именно у них альфа-распад проявляется весьма энергично. Для каждого альфа-активного изотопа характерна своя величина энергии распада. Чем выше эта энергия, тем менее долговечен изотоп, тем меньше период его полураспада.
Физики измеряют эту энергию в специальных единицах — электроновольтах. Так, у астата-213 эта энергия составляет 9,2 миллиона электроновольт (