Путешествие в страну РАИ — страница 14 из 17

строя.

Расследование показывает, что причина аварии заключается именно в этой детали. В ней были внутренние дефекты, не замеченные ранее. Теперь они дорого обошлись производству.

Значит, оценивая готовую деталь, нужно требовать не только ее соответствия стандарту, но и заглянуть внутрь, выяснить, нет ли в ней предательских трещин или раковин.

Таким всевидящим глазом могут быть рентгеновские лучи.

Метод исследования металлических деталей с помощью рентгеновских лучей, или рентгеноскопия, уже давно применяется в промышленности. Но у этого метода есть существенные недостатки. Он требует громоздких и дорогостоящих аппаратов, высокого напряжения тока. Энергия рентгеновского излучения нередко оказывается недостаточной для просвечивания изделий большой толщины. Кроме того, массивные аппараты часто не дают возможности «просмотреть» ответственные участки котлов, трубопроводов и различных других сложных конструкций.

Поэтому сейчас рентгеноскопия вытесняется более удобным методом гамма-дефектоскопии. Как показывает само название, это метод обнаружения внутренних дефектов в различных изделиях с помощью гамма-излучения радиоактивных изотопов.

Когда гамма-лучи проходят через вещество, они ослабляются. Величина ослабления (или величина поглощения) зависит от разных причин: от толщины облучаемого материала, от зарядов ядер и процентного содержания элементов, входящих в его состав. В общем поглощение пропорционально удельному весу вещества. Кстати, на этом основано определение удельных весов с помощью радиоактивных изотопов.

Как же осуществляется гамма-дефектоскопия на практике?

Прежде всего подбирается подходящий источник излучения. Чем толще контролируемые детали, тем большая энергия гамма-излучения требуется. Выбор радиоактивных изотопов с различными энергиями гамма-лучей достаточно велик: кобальт 60, цезий 137, церий 144, европий 155, тулий 170.

Источник излучения, а он портативен, помещается с одной стороны детали; с другой стороны располагается детектор — устройство, которое фиксирует проникающие сквозь материал лучи. Таким устройством может служить ионизационная камера или специальная фотопленка. Если применяется фотопленка, то метод носит название гамма-радиографии.

Когда в детали нет внутренних дефектов, гамма-излучение ослабляется равномерно по всей поверхности. Но стоит на пути гамма-лучей оказаться какому-нибудь дефекту, как величина поглощения резко меняется. Ионизационная камера сигнализирует об этом скачком ионизационного тока. Участки фотопленки, расположенные против дефектов, оказываются более темными, чем соседние.

Свободная от недостатков рентгеноскопического метода, гамма-дефектоскопия нашла широкое применение в самых различных областях — от строительства трубопроводов до археологии.

Она незаменима при контроле качества сварных стыков газопровода высокого давления. В Советском Союзе на всех трассах строящихся газопроводов применяется гамма-дефектоскопия.

Она помогла археологам «прочитать» на бронзовой прокладке ассирийского шлема IX века до нашей эры письмена и символические знаки, которые нельзя было обнаружить никакими другими способами.

Но применение гамма-излучения в промышленности ограничивается не одним лишь отысканием дефектов в деталях и изделиях. Гамма-лучи используются в автоматизации многих производственных процессов.

Взять хотя бы автоматическое измерение толщины.


Изотопы в автоматах

Степень поглощения гамма-излучения зависит от толщины предмета. Интенсивность исходного гамма-излучения от источника нам известна. Если мы будем знать величину излучения, прошедшего через слой вещества, нетрудно определить и толщину слоя.

Для этого строят так называемую эталонную кривую поглощения. Через куски материала известной толщины пропускают гамма-излучение и определяют степень его поглощения. Таким образом находят, что лист железа толщиной, например, 2 миллиметра поглощает столько-то процентов излучения; при толщине 3 миллиметра соответственно больше и так далее. Найденные результаты наносят на график: на горизонтальной оси откладывают толщину материала в миллиметрах, на вертикальной — степень поглощения гамма-излучения. По полученным точкам строят кривую.

По ней можно определить неизвестную толщину материала, если найти степень поглощения в нем гамма-лучей.

Скажем, такой случай из практики.

В обработке металла большую роль играет процесс прокатки. Чтобы изменить толщину обрабатываемого металла, нужно увеличить или уменьшить величину давления на валки прокатного стана. Обычно устанавливают определенную толщину проката. С помощью гамма-излучения этот процесс можно автоматизировать.

По одну сторону стального листа помещается источник излучения, по другую — счетчик или ионизационная камера. Если толщина проката вдруг оказывается ниже нормы, степень поглощения уменьшается, ток в ионизационной камере усиливается; это изменение тока передается на специальное устройство, которое уменьшает давление на валки.

Автоматическая регулировка толщины с помощью радиоактивных изотопов применяется в бумажной промышленности — для измерения толщины бумаги в бумагоделательных машинах. Текстильщики таким способом регулируют толщину тканей. Наконец, в резиновой и химической промышленности толщиномеры обслуживают важные процессы.

В производствах, особенно химических, часто требуется измерять уровень жидкости. Но как определить уровень жидкости в закрытом резервуаре? Эта задача далеко не всегда оказывается простой. Ведь химики имеют на производстве дело с громоздкими и сложными аппаратами, с процессами, для протекания которых требуются строгие условия. Особенно трудно приходится в тех случаях, когда резервуар заполнен легко воспламеняющейся или ядовитой жидкостью.

Помогают решить задачу уровнемеры.

На поверхности жидкости в специальном поплавке помещается гамма-излучатель. В верхней части резервуара располагается счетчик, который регистрирует излучение. Чем выше уровень, тем больший ток будет возникать в регистрирующем устройстве. Этот ток приводит в действие специальный мотор, который через вентиль может регулировать приток и отток жидкости и тем самым удерживать уровень жидкости в определенном положении.

…Илья приоткрыл дверь избушки.

— Ну как там, небо чистое?

— Пока ни облачка!

— Погодите, впереди еще длинная ночь! — скептически заметил Олег. — В горах погода изменчива.

— А мне все-таки верится, что завтра мы возьмем Аламинский перевал, — возразила Наташа. — Должно же нам когда-нибудь повезти.

— Рюкзаки наши много полегчали, — заметил Олег. — Правда, снег слишком глубок. Ничего, народ у нас здоровый.

— Почему туристы так редко болеют в походах? — удивилась Майка. — Кажется, в городе у человека сто недугов, а в путешествии…

— Сейчас ты скажешь: природа лучший лекарь! — перебил ее Илья. — А по-моему, не это главное. Самосознание, сознание того, что в походе болеть нельзя: это плохо и для тебя и для твоих спутников. Вот в чем причина! И ни в коем случае не хандрить, если схватишь простуду.

— Так зачем же ты столь тщательно подбирал в Москве аптечку? — засмеялся Сергей. — Сказал бы прямо: не сметь заболевать, лекарств не будет…

— Почему же? — стала защищать Илью Наташа. — Лекарства — один из центральных пунктов теории Ильи. Тоже самосознание: если я вдруг захвораю, то на этот случай найдется кое-что в аптечке.

Все дружно расхохотались.

— Послушайте, мы опять отвлеклись, — пробасил Олег. — Вернемся к изотопам. Раз уж вспомнили о медицине…

— …то нужно рассказать, какую роль в ней играют радиоактивные изотопы! — закончила за него Наташа.

Илья состроил кислую мину:

— Увольте! У меня скоро отнимется язык!

— Хватит, Илья, ломаться! — отрезала Майка. — Сегодня кончается наше зимовье. Вдохновись тем, что завтра будем по ту сторону перевала.


Смерть против смерти

— Ладно, — Илья хрустнул пальцами. — Начну с детективной истории. Это произошло в одном заграничном городе. Случай сам по себе банальный: нашли труп человека, отравившегося мышьяком. Это был веселый, жизнерадостный мужчина, в расцвете сил. Мысль о самоубийстве у лиц, знавших его, отпала сама собой.

Значит, умышленное отравление? Заподозрили соседа. Тот категорически отрицал предъявленное обвинение, говорил, что в день, когда обнаружили труп, не был дома, но свидетелей в свою защиту представить не мог. Судебно-медицинский эксперт считал, что отравление произошло накануне вечером. Дело запутывалось.

— Но причем здесь радиоактивные изотопы? — спросил Алеша.

— Постой, не перебивай! — возмутился Олег.

— Нужно было определить, когда в организм попал мышьяк.

Известно, что мышьяк откладывается в волосах. Известно также, что у здорового человека волосы растут со скоростью 0,5 миллиметра в сутки. Наконец, известно, что рост волос продолжается еще 2–2,5 суток после смерти.

Следовательно, время попадания мышьяка в организм можно рассчитать по расстоянию места скопления мышьяка от корня волос.

Но как определить это место? Ни химический, ни спектральный анализы не могли бы дать результатов более или менее точных.

Тогда возникла оригинальная мысль.

Волос облучили нейтронами: к счастью, была возможность — в городе действовал ядерный реактор.

В результате стабильные изотопы мышьяка превратились в радиоактивные. Потом облученный волос перемещали вдоль узкого отверстия специально сконструированного счетного приспособления.

Таким путем установили, в какой части волоса сконцентрирован мышьяк.

Данные неопровержимо доказали, что мышьяк принят в середине дня, а не накануне вечером. Отравление, как выяснилось, было результатом нелепой случайности.

Так радиоактивные изотопы мышьяка пришли на помощь судебной медицине. Они позволили раскрыть причину трагической гибели человека.

А сумеют ли радиоактивные изотопы бороться со смертью, побеждать смерть, лечить болезни, которые, казалось бы, неизлечимы? Может ли радиоактивное излучение превратиться из врага человеческого организма в его друга?