[85].
Таким образом, мощности ℤ и ℤ+ равны, что, в принципе, и неудивительно – ведь оба эти множества бесконечны.
Выстроив взаимно однозначное соответствие между элементами двух множеств, мы показали, что мощности ℤ и ℤ+ совпадают, что они, так сказать, «одинаково бесконечны». Пришло время для вопроса поинтереснее: совпадают ли мощности ℤ+ и ℝ? Да, разумеется, оба бесконечны. Впрочем, лучше не утверждать наверняка, пока мы не выстроим взаимно однозначное соответствие между их элементами. Сейчас мы убедимся, что это невозможно.
Итак, мы должны сопоставить каждый элемент первого множества с элементом второго множества и убедиться, что каждый элемент второго множества сопоставлен с элементом первого. Как же доказать, что это невозможно? Мы покажем, что попытки выстроить все элементы ℤ+ и ℝ в пары обречены на провал, потому что кое-какие элементы ℝ окажутся пропущены. А теперь к делу!
Допустим, мы все-таки нашли взаимно однозначное соответствие между ℤ+ и ℝ. Тогда все элементы можно занести в таблицу такого рода:
Все целые положительные числа занесены в левую колонку, все (вроде бы) действительные числа занесены в правую колонку. Сейчас мы убедимся: как ни заполняй правую колонку, будут действительные числа, которые туда не попадут.
Но прежде нам придется отвлечься на одну досадную техническую проблему[86]. Некоторые действительные числа в десятичной системе счисления записываются двумя способами. Например, число 1/4. С одной стороны, мы можем записать его как 0,25. С другой стороны, можно записать и так: 0,24999999999999… Ряд девяток уходит в бесконечность. 0,25 тоже можно записать с бесконечным количеством нулей на конце. Таким образом,
Примем решение вносить в таблицу запись числа с нулями на конце. Это никак не влияет на доказательство, мы просто договариваемся о форме записи.
Итак, вернемся к доказательству. Представим, что перед нами уже лежит таблица с колонками целых положительных и действительных чисел. Поищем действительное число, ускользнувшее из правой колонки.
Для начала подчеркнем первую цифру после запятой в первой колонке, вторую цифру после запятой во второй колонке и т. д.:
Выпишем подчеркнутые цифры в ряд: 3, 8, 7, 3, 6… С помощью этого ряда создадим новое число. Начнем его с нуля, поставим десятичную запятую и дальше будем двигаться по ряду подчеркнутых цифр с двумя условиями:
(A) Если подчеркнута цифра 3, пишем 7.
(B) Если подчеркнута не цифра 3, пишем 3.
Как это работает с нашим рядом?
Первая цифра 3. Выполняется условие (A). Мы получаем 0,7___.
Вторая цифра 8. Выполняется условие (B). Мы получаем 0,73___.
Третья цифра 7. Снова выполняется условие (B). Получаем 0,733___.
Четвертая цифра снова 3, по правилу (A) ставим семерку: 0,7337___.
Пятая цифра 6, по правилу (B) ставим тройку: 0,73373___.
Продолжая двигаться вдоль ряда подчеркнутых цифр, мы получим число x. В нашем примере число x = 0,73373…, а остальные цифры заполняются согласно условиям (A) и (B).
Вот процесс выстраивания x в пошаговом виде:
Число x зависит от нашей таблицы. Другая таблица даст другое x. Мы утверждаем, что в любой таблице x, выстроенное таким образом, не встречается в правой колонке; следовательно, взаимно однозначное соответствие между целыми положительными и действительными числами невозможно.
Начнем с самого верха. Очевидно, число x не идентично первому числу в правой колонке, и вот почему. Первая строка 1 ↔ Y1. Если первая цифра Y1 после запятой – тройка, то первая цифра числа x после запятой – семерка; но если первая цифра Y1 после запятой – не тройка, то первая цифра числа x после запятой, напротив, – тройка. Ситуация выглядит так:
Таким образом, Y1 и x не совпадают. Какая бы цифра ни стояла после запятой в Y1, первая после запятой цифра x другая. Следовательно, в первой строке таблицы x мы не найдем.
Двигаясь вниз по таблице, мы обнаружим, что во второй строке x тоже нет. Но если соответствие между ℤ+ и ℝ взаимно однозначное, где-нибудь в правой колонке число x просто обязано возникнуть. Иными словами, x появляется в строчке k, где слева стоит целое положительное число k, то есть k ↔ Yk = x. Но мы все время будем сталкиваться с одной и той же проблемой. Какая цифра стоит в числе Yk на позиции k после запятой? Если тройка, то на соответствующей позиции в x обнаружится семерка; если не тройка, то на соответствующей позиции в x как раз тройка. Это выглядит так:
Эта проверка показывает, что x в правом столбце отсутствует. Мы, конечно, можем выстроить новую таблицу и поместить x на первую позицию. Но, если применить к новой таблице алгоритм с правилами (A) и (B), мы обнаружим, что в ней отсутствует некое число x'.
Вывод: всякая таблица будет ущербной! Таким образом, взаимно однозначное соответствие между ℤ+ и ℝ построить невозможно.
Мы доказали, что мощности ℤ и ℤ+ совпадают. И дело тут не только в том, что оба множества бесконечно велики, а еще в том, что мы построили биекцию.
ℤ+ и ℝ тоже содержат бесконечное число элементов, но биекция между ними неосуществима. Так как любое целое положительное число – действительное, можно сказать, что ℝ «больше» ℤ+. Целых положительных чисел недостаточно, чтобы по одному сопоставить их со всеми действительными.
Мощность конечного множества – это число. Мощность множества A = {1, 3, 7, 9} равна четырем: |A| = 4. Но как зафиксировать мощность бесконечного множества? До выкладок Кантора математики довольствовались красивым символом ∞. Есть искушение написать: |ℤ+| = ∞ и |ℝ| = ∞, а затем сделать ошибочное заключение, что |ℤ+| = |ℝ|. Символ ∞ не передает всех особенностей, присущих мощностям бесконечных множеств.
Кантор решил исправить это и разработал новую систему чисел за пределами конечных. Такие числа называются трансфинитными и могут отразить мощность бесконечных множеств.
Мы выяснили, что ℤ+ – «наименьшее» бесконечное множество. Что это означает? Предположим, X – бесконечное множество. Между X и ℤ+ может быть биекция, а может и не быть. Но математики показали, что всегда есть взаимно однозначное соответствие между ℤ+ и некоторой частью множества X: либо ℤ+ и X равновелики, либо ℤ+ равновелико с частью множества X. Грубо говоря, либо ℤ+ и X имеют одинаковый размер, либо X больше.
Множества мощности ℤ+ называют счетными. Это самые маленькие бесконечные множества. Кантор ввел символ для обозначения их мощности: Мощности ℤ и ℤ+ совпадают, потому Так как ℝ обширнее, чем ℤ+, логичным будет записать: Величина обозначает мощность бесконечного множества, и это не обычное число. Его называют трансфинитным числом, причем – наименьшее из трансфинитных чисел[87].
Мощности бесконечных множеств описывает целая вселенная трансфинитных чисел. Множества мощностью больше называют несчетными, и математики показали, что есть новый «уровень бесконечности», на ступень выше Мы можем доказать, что существует множество X, которое обладает двумя свойствами:
1.
2. Нет множеств с мощностью между |X| и
Таким множествам присвоили мощность Иначе говоря, и между этими двумя величинами нет других трансфинитных чисел.
Существует целая последовательность трансфинитных чисел. Она выглядит следующим образом: и т. д. Иерархия подразумевает, что есть трансфинитное число, превышающее любое אk[88]. Наименьшее трансфинитное число, превышающее любое אk, мы обозначаем אω, и есть бесконечно много еще больших чисел!
Где в этой схеме находится ℝ? Мы выяснили, что Но можем ли мы определить мощность ℝ в точности? Сколько всего действительных чисел?
Вообразите: вы переступаете порог великолепного сооружения. За огромными воротами – мраморная лестница, ведущая в дивные палаты. Но стоит вам открыть дверь в подвал, как картина резко переменится. Там вы обнаружите ржавые трубы, искрящую проводку, бьющий в глаза электрический свет и разбитый пол, а может, и скопища тараканов. Подвал ужасен, но здания наверху без него не было бы.
Это хорошая метафора для сооружения под названием «математика». Как мы уже говорили в начале главы, все объекты в математике (от чисел до кругов) можно определить через другие объекты, попроще. Рано или поздно мы дойдем до самого дна и обнаружим объект, через который объясняются все другие. Это и будет множество.
Мы определили множество как набор объектов[89], но не сказали, что такое набор (в общем-то, это просто другое слово вместо «множества»), и не задались вопросом, какого рода объекты мы собираем вместе (и даже не дали определение объекта). Как нам выпутаться из этой ситуации?
Вначале математики относились к ней довольно беззаботно. Говорили просто: есть такая штука – множество и есть свойство «быть элементом множества», которое обозначают символом, а раз так, то можно двигаться дальше