T10, не складывая все десять чисел?
Есть хорошая новость: да, такое возможно, и доказательство выглядит просто и элегантно. Запишем сумму первых десяти целых положительных чисел в возрастающем и убывающем порядке:
Если мы сложим все эти 20 чисел, результат будет равен удвоенному T10. Но мы не станем сразу суммировать числа по горизонтали. Для начала сложим их попарно по вертикали:
В нижней строке все элементы равны 11, потому ответ прост[103]: 11 × 10 = 110. Теперь поделим этот результат пополам: T10 = 110 / 2 = 55.
Как мы будем действовать в общем случае? Для вычисления TN запишем целые числа от 1 до N в возрастающем и убывающем порядке и сложим пару в каждом столбце:
В нижней строке N элементов, каждый равен N + 1; таким образом, их сумма равна N × (N + 1). Поскольку это «двойная порция» TN, получается:
Для вычисления T100 нет необходимости складывать сотню чисел. Нужно лишь посчитать:
(100 × 101) / 2 = 5050.
Вот и ответ.
Существует ли простая, элегантная формула вычисления факториала? Увы, нет. Однако есть формула для вычисления приближенного значения факториала, выведенная Джеймсом Стирлингом[104]:
Эта формула включает два замечательных числа, о которых шла речь в предыдущих главах: π ≈ 3,14159, представляющее собой частное от деления длины окружности на ее радиус (см. главу 6), и число Эйлера e ≈ 2,71828 (см. главу 7).
Точность формулы Стирлинга возрастает при больших значениях N. Например, для N = 10 факториал 10! = 3 628 800, а вычисления по формуле (C) дают 3 598 695,6187. Погрешность – всего около 0,8 %.
Для N = 20 мы получаем:
20! = 2 432 902 008 176 640 000.
По формуле (C):
20! = 2 422 786 846 761 133 393,6839075390.
Погрешность равна около 0,4 %. Если мы перепрыгнем к N = 1000, погрешность составит менее 0,01 %.
Число 145 называют факторионом, потому что оно обладает волшебным свойством. Если мы сложим факториалы составляющих его цифр, то получим то же самое число:
1! + 4! + 5! = 1 + 24 + 120 = 145.
Числа 1 и 2 тоже являются факторионами (но не ноль, как мы увидим чуть позже). Существует всего четыре факториона. Попробуйте самостоятельно найти четвертый.
Это сложновато без компьютерной программы. Ответ приведен в конце главы.
Многие испытывают необоримое желание ответить: «0! равен нулю!» (Второй восклицательный знак всего лишь подчеркивает экспрессивность этой фразы.) Первый множитель в N! равен N, а умножение на ноль дает ноль. Однако математики договорились, что 0! = 1, и я завершу главу разъяснением этого факта.
В главе 1 мы обсудили концепцию пустого произведения – умножения при отсутствии элементов. Факториал нуля – пример пустого произведения. Для любого N факториал представляет собой результат перемножения N элементов. Это ясно для положительных значений N, но это верно и для N = 0. По определению, при подсчете N! мы перемножаем все целые числа от 1 до N. В случае N = 0 таких чисел просто-напросто нет, и произведение оказывается пустым. По договоренности, пустое произведение равно 1.
А вот еще одно обоснование того, почему 0! = 1. При подстановке N = 1 в формулу (B) мы получаем:
N! = N × (N – 1)! => 1! = 1 × 0!
Поскольку 1! = 1, мы получаем 0! = 1.
А теперь давайте вернемся к расстановке книг на полке. Сколькими способами можно расставить на полке ноль книг? Есть один-единственный вариант: оставить полку пустой.
Глава 11Закон Бенфорда
Для нас очевидно, что все цифры сотворены равными. Нет, мы не имеем в виду «равными друг другу» – разумеется, нет! Но внутри нас теплится вера в то, что все десять цифр, от 0 до 9, играют одинаковые роли в мире чисел.
Печальная правда заключается в том, что числа могут быть такими же нескромными, как люди: они все стремятся к первенству. Представьте, что вам приглянулась вещь стоимостью 43,52 доллара. Какая из цифр кажется вам более значимой? Важнее всего для вас цифра четыре, а двойка на конце не играет почти никакой роли. Вы встревожитесь, если четверка вдруг изменится на девятку, а если изменится двойка, вряд ли вас это сильно взволнует.
Тот, кто ждет от Вселенной справедливости, должен верить, что у всех цифр одинаковые шансы сыграть значимую роль, – но бедный, бедный нолик! Он не становится первой значащей цифрой, честь выпала на долю других[105]. Все они стремятся быть значительней остальных настолько часто, насколько это возможно.
Мы верим, что цифры от 1 до 9 участвуют в математике на равных правах и каждая начинает одну девятую часть всех существующих чисел (примерно 11 %). Разумеется, не может быть большего количества чисел, начинающихся с двойки, чем с пятерки.
Ведь так?
Утверждение о том, что все цифры от 1 до 9 равно представлены в качестве первой значащей цифры, приобретает смысл, если иметь в виду определенный диапазон чисел: скажем, от 1 до 999 999. В этом случае все цифры от 1 до 9 одинаково часто занимают место первой значащей цифры.
Разумеется, на результат влияет, какой именно диапазон мы выбрали. Если мы посмотрим на другой ряд чисел, скажем от 1 до 19, то обнаружим, что здесь все цифры от 2 до 9 занимают первую позицию всего единожды, в то время как 1 становится первой значащей цифрой в 11 случаях.
Ради беспристрастности давайте возьмем какие-нибудь величины из внешнего мира. Мы должны быть аккуратными и не искать числа, сконцентрированные в узком диапазоне. Поэтому мы не станем брать такой параметр, как рост взрослого человека[106], ведь практически все результаты измерений будут начинаться с 1 или 2 (ничтожно малое количество людей имеет рост выше 299 или ниже 100 сантиметров).
Ради уверенности в том, что все цифры имеют одинаковые шансы стать первой значащей цифрой числа, мы будем вести измерения в широком диапазоне. Например, давайте зададимся вопросом, насколько велико население разных стран[107]. Это значение будет колебаться от миллиарда с лишним (Китай и Индия) до менее чем десяти тысяч (в случае с карликовым государством на коралловом острове Науру[108]). Вдобавок к численности населения давайте выясним следующие параметры для сотен государств:
– валовой внутренний продукт (в долларах США);
– количество аэропортов;
– площадь (в квадратных километрах);
– ежегодную выработку электроэнергии (в киловатт-часах);
– ежегодное потребление продуктов нефтепереработки (в баррелях);
– общую длину всех железных дорог (в километрах);
– количество телефонов.
Таким образом, мы соберем около 2000 параметров и затем подсчитаем, сколько чисел начинается с цифры 1, сколько – с цифры 2 и т. д. Вот что у нас получится:
Невероятно: чаще всего на первой позиции встречается цифра 1 (примерно в 30 % случаев) и реже всего – цифра 9 (меньше 5 % случаев)!
Мы призываем читателей повторить эксперимент самостоятельно: взять статистический справочник, выписать первые цифры длин рек, высот гор, курсов акций, среднего роста различных видов животных, количества слов в романах, производства риса в разных странах и т. д.
Соберите как можно больше параметров, покрывающих широкий диапазон значений, и вы увидите все ту же логику. Чаще всего первой цифрой оказывается единица, реже всего – девятка.
Такое неравномерное распределение первых значащих цифр известно как закон Бенфорда, названный в честь Фрэнка Бенфорда[109]. Он опубликовал статью об этом феномене в 1938 году, хотя необходимо отметить, что еще в 1881 году к такому же выводу пришел Саймон Ньюком[110].
Закон Бенфорда утверждает нечто большее, чем «единица на первой значащей позиции встречается чаще всего, а девятка – реже всего». Закон Бенфорда констатирует (при наличии большого количества данных) следующую частотность[111]:
Есть и другая область, где обнаруживается неравномерное распределение первых значащих цифр, – это знакомая всем таблица умножения[112]:
Среди 81 числа в этой таблице 18 начинаются на 1, а именно:
При этом всего 3 числа начинаются на 9:
Вот процентное соотношение первых значащих цифр в обычной таблице умножения.
Мы видим, что цифры поменьше встречаются чаще, чем цифры побольше, но частотность здесь не совсем такая, какую предсказывает закон Бенфорда.
Таблица умножения дает нам все возможные результаты умножения одного однозначного числа на другое от 1 × 1 до 9 × 9.
Давайте расширим этот принцип и переберем все варианты умножения трех однозначных чисел. Проделаем следующие вычисления[113]:
В общей сложности это дает 9³ = 729 троек. Посмотрим, как часто встречаются разные цифры в первой позиции: