. Рациональные числа хороши для операций с физическими величинами[43], но их недостаточно для всех математических величин. Длина диагонали квадрата 1 × 1 – иррациональное число.
Начав с числа 1 и шаг за шагом проделывая операции сложения, вычитания и умножения, мы можем получить любое целое число, но и только. Если мы добавим операцию деления, нам откроются все рациональные числа, но ими же мы и будем ограничены.
Если мы введем операцию извлечения квадратного корня[44], то получим числа, которые не являются отношением целых чисел. Например:
Для удобства мы будем называть конструктивными такие числа, которые можно получить с помощью числа 1 и пяти операций – сложения, вычитания, умножения, деления и извлечения квадратного корня – с привычными оговорками: нельзя делить на ноль и извлекать корень из отрицательных величин.
Разумеется, возникает вопрос: все ли числа конструктивные?
Древние греки усматривали магическую внутреннюю связь между арифметикой и геометрией. Эта связь подтверждалась операциями с использованием двух инструментов: линейки без делений и циркуля. Возьмем отрезок единичной длины; какова может быть длина отрезков, построенных на его основе с помощью карандаша, линейки без делений и циркуля?
Складывать и вычитать отрезки просто. Пусть у нас есть отрезки длиной a и b. С помощью линейки мы продлеваем первый отрезок. Ставим иглу циркуля в начало второго отрезка, а острие карандаша на другой ножке циркуля – в конец отрезка. После этого мы перемещаем иглу в конец первого отрезка и отмечаем точку на продленной линии. Так мы находим сумму двух отрезков. Что касается вычитания, оно будет означать не приращение, а укорочение отрезков.
Дальше дело пойдет несколько сложнее, но мы вполне способны умножать, делить и даже извлекать квадратные корни из длин отрезков с помощью линейки без делений и циркуля.
Да, это так: с помощью двух простейших инструментов мы можем найти длины, равные всем положительным конструктивным числам!
Было время, когда греки думали, что все числа рациональные, но пифагорейцы доказали, что это не так.
Однако грекам было непросто расстаться с верой в связь арифметики и геометрии. В основе этой веры лежали представления об эстетике. Неужели не все числа можно выразить с помощью линейки без делений и циркуля?
Эта вера подкреплялась решениями двух из трех знаменитых древнегреческих геометрических задач. Наиболее известна задача о трисекции угла: с помощью линейки без делений и циркуля нужно поделить заданный угол на три равных угла[45].
Менее известны две другие головоломки:
• Удвоение куба. Необходимо найти длину ребра куба, чей объем в два раза больше заданного. Если длина ребра первого куба – единица, это равносильно построению отрезка длиной
• Квадратура круга. Необходимо построить квадрат, чья площадь равна площади заданного круга. Если радиус круга равен единице, его площадь равна π. Тогда сторона квадрата будет равна
Понадобилось две тысячи лет, чтобы понять: эти задачи неразрешимы[46]. Ни ни не являются конструктивными числами[47]. Решая проблему трисекции угла, мы сталкиваемся с тем фактом, что некоторая величина (косинус 20°) не является конструктивным числом.
Существование неконструктивных чисел опровергает связь между арифметикой и геометрией, гревшую сердца древним грекам, которые решали задачи на построение с линейкой без делений и циркулем.
Если музыканты перед концертом не настроили инструменты, возникает акустический диссонанс: музыка становится неблагозвучной.
Когда на двух инструментах берут одинаковые ноты, акустическая частота звуковых волн оказывается одинаковой. Рассогласованность же действует слушателю на нервы. Впрочем, можно брать и разные ноты, и музыка все равно будет ласкать слух, если эти ноты гармонируют друг с другом. Но как достичь гармонии? Что именно нам приятно слышать?
Этот вопрос волновал еще древних греков. Они выяснили, что, если акустические частоты соотносятся как малые целые числа (например, 2 и 3), сочетание нот ласкает слух. Так был открыт первый музыкальный строй (по легенде, его создал Пифагор[48]). Подбирая частоты для нот, важно выполнить главное требование: частоты нот, находящихся на противоположных концах октавы, должны соотноситься примерно как 2:1. Ради гармоничных звуков древние греки подбирали ноты так, чтобы парное соотношение частот до и фа, а также до и соль выражалось малыми целыми числами. В пифагорейском варианте соотношение между частотами соседних нот было равно 9/8 для целого тона (например, между до и ре) и 256/243 для полутона (например, между ми и фа).
Вот весь пифагоров строй[49]:
Из этого соотношения можно посчитать соотношение, скажем, между частотами нот до и фа. Мы получим частоту фа, если умножим частоту до на
Акустические частоты, соотносящиеся как 4:3, прекрасно звучат вместе.
Мы можем визуализировать звуковые волны, возникающие, когда до и фа звучат вместе. Это будет выглядеть примерно так:
А частота ноты ля окажется немножко выше, звуковая волна будет выглядеть так:
Разница, заметная для глаза, заметна также и для слуха; вы видите диссонанс.
Недостаток пифагорова строя в том, что широко распространенное мажорное трезвучие до мажор – до-ми-соль – звучит как диссонанс; соотношение частот достаточно сложное.
Спустя много веков были найдены другие варианты. Например, так называемый чистый строй, или натуральный строй[50], выглядит так:
В этом варианте частоты до, ми и си прекрасным образом соотносятся как 4:5:6. Но полный тон от до до ре звучит иначе, чем другой полный тон от ре до ми.
И у пифагорова строя, и у натурального строя есть еще один серьезный изъян: если ансамбль исполняет произведение в тональности, скажем, до мажор, а затем музыканты должны переключиться на тональность фа, инструменты придется перенастраивать. Это довольно затруднительно для лютниста, невероятно сложно для клавикордиста и совершенно нереально для тех, кто играет на деревянных духовых.
Исправить изъян можно, если создать музыкальный строй, действующий одинаково хорошо во всех тональностях. Это накладывает два условия:
1. Частоты нот на противоположных концах октавы должны соотноситься как 2:1;
2. Если ноты отделены полутоном, соотношение их частот должно быть таким же, как у остальных полутонов октавы (например, соотношение частот до и ми-диез равно соотношению частот до-диез и ре). Всего в октаве двенадцать полутонов: до, до-диез, ре, ми, ми-диез, фа, фа-диез, соль, соль-диез, ля, ля-диез и си.
Если соотношение частот любых двух соседних нот равно r (условие 2), а соотношение частот двенадцатой и первой ноты равно 2 (условие 1), то r12 = 2. Следовательно,
Если настроить музыкальные инструменты таким образом, чтобы соотношение частот соседних нот в октаве было равно не придется перенастраиваться при переходе в другую тональность. Этот музыкальный строй называют равномерно темперированным[51], и сегодня им пользуются все профессиональные музыканты.
К сожалению, число иррационально[52]. Иными словами, соотношение частот двенадцати нот в равномерно темперированном строе (за исключением начала и конца октавы) не может быть выражено через соотношение целых чисел. Соотношение частот до и соль в таком случае равно не 3:2, а примерно 1,4983 (число принято округлять до 1,5).
Как это звучит? Сейчас почти все музыкальные инструменты настраивают по равномерно темперированному строю, и они ласкают наш слух. Но что мы теряем?
Вот как выглядит звуковая волна для трезвучия до мажор. В первом варианте частоты нот соотносятся как 4:5:6, во втором подобраны в соответствии с равномерно темперированным строем. Первый вариант выглядит (и звучит!) гораздо гармоничнее.
Преимущество равномерно темперированного строя состоит в том, что в нем нет необходимости постоянно перенастраивать музыкальные инструменты. Но есть один инструмент, способный менять тональность мгновенно: человеческий голос.
Вокальные ансамбли без инструментального сопровождения (например, «парикмахерские» квартеты[53]) не нуждаются в равномерно темперированном строе и берут ноты, соотношение частот которых можно выразить целыми числами. И мы слышим чудесные хорошо резонирующие звуки.
Глава 5i
В главе 4 мы поразмышляли над «точным» значением числа √2 и пришли к выводу, что его нельзя выразить в виде соотношения двух целых чисел и, следовательно, оно иррационально. Тем не менее мы можем найти его значение с невероятной точностью.
Число √2 не относится к рациональным числам, однако нас не мучает вопрос, существует ли такое число, что x² = 2. Несмотря ни на что, √2 имеет законную прописку где-то между 1,41 и 1,42. Это пример